Pytorch实战——MNIST数据集手写数字识别(CNN卷积神经网络)

原视频链接:轻松学Pytorch手写字体识别MNIST

1.加载必要的库

#1 加载必要的库
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets,transforms

2.定义超参数

#2 定义超参数
BATCH_SIZE= 64 #每次训练的数据的个数
DEVICE=torch.device("cuda"if torch.cuda.is_available()else"cpu")#做一个判断,如果有gpu就用gpu,如果没有的话就用cpu
EPOCHS=20 #训练轮数

3.构建pipeline,对图像做处理

#3 构建pipeline,对图像做处理
pipeline=transforms.Compose([
    transforms.ToTensor(),#将图片转换成tensor类型
    transforms.Normalize((0.1307,),(0.3081,))#正则化,模型过拟合时,降低模型复杂度
])

4.下载、加载数据集

#下载数据集
train_set=datasets.MNIST("data",train=True,download=True,transform=pipeline)#文件夹,需要训练,需要下载,要转换成tensor

test_set=datasets.MNIST("data",train=False,download=True,transform=pipeline)
#加载数据
train_loader=DataLoader(train_set,batch_size=BATCH_SIZE,shuffle=True)#加载训练集,数据个数为64,需要打乱

test_loader=DataLoader(test_set,batch_size=BATCH_SIZE,shuffle=True)

下载完毕之后,看一眼数据集内的图片

with open("MNIST的绝对路径","rb") as f:
    file=f.read()

image1=[int(str(item).encode('ascii'),10)for item in file[16: 16+784]]
print(image1)

import cv2
import numpy as np

image1_np=np.array(image1,dtype=np.uint8).reshape(28,28,1)

print(image1_np.shape)
cv2.imwrite("digit.jpg",image1_np)#保存图片

输出结果
在这里插入图片描述

5.构建网络模型

#5 构建网络模型
class Digit(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1= nn.Conv2d(1,10,kernel_size=5)
        self.conv2=nn.Conv2d(10,20,kernel_size=3)
        self.fc1=nn.Linear(20*10*10,500)
        self.fc2=nn.Linear(500,10)

    def forward(self,x):
       input_size=x.size(0)
       x=self.conv1(x)#输入batch_size 1*28*28 ,输出batch 10*24*24(28-5+1=24)
       x=F.relu(x) #激活函数,保持shape不变
       x=F.max_pool2d(x,2,2)#2是池化步长的大小,输出batch20*12*12

       x=self.conv2(x)#输入batch20*12*12 输出batch 20*10*10 (12-3+1=10)
       x=F.relu(x)

       x=x.view(input_size,-1)#拉平,-1自动计算维度 20*10*10=2000

       x=self.fc1(x)#输入batch 2000 输出batch 500
       x=F.relu(x)
       x=self.fc2(x)#输出batch 500 输出batch 10

       ouput=F.log_softmax(x,dim=1)#计算分类后每个数字概率
       return ouput

6.定义优化器

model =Digit().to(device)

optimizer=optim.Adam(model.parameters())##选择adam优化器

7.定义训练方法

#7 定义训练方法
def train_model(model,device,train_loader,optimizer,epoch):
    #模型训练
    model.train()
    for batch_index,(data,target) in enumerate(train_loader):
        #部署到DEVICE上去
        data,target=data.to(device), target.to(device)
        #梯度初始化为0
        optimizer.zero_grad()
        #预测,训练后结果
        output=model(data)
        #计算损失
        loss = F.cross_entropy(output,target)#多分类用交叉验证
        #反向传播
        loss.backward()
        #参数优化
        optimizer.step()
        if batch_index%3000==0:
            print("Train Epoch :{}  \t Loss :{:.6f}".format(epoch,loss.item()))

8.定义测试方法

#8 定义测试方法
def test_model(model,device,test_loader):
    #模型验证
    model.eval()
    #正确率
    corrcet=0.0
    #测试损失
    test_loss=0.0
    with torch.no_grad():   #不会计算梯度,也不会进行反向传播
            for data,target in test_loader:
                #部署到device上
                data,target=data.to(device),target.to(device)
                #测试数据
                output=model(data)
                #计算测试损失
                test_loss+=F.cross_entropy(output,target).item()
                #找到概率最大的下标
                pred=output.argmax(1)
                #累计正确的值
                corrcet+=pred.eq(target.view_as(pred)).sum().item()
            test_loss/=len(test_loader.dataset)
            print("Test--Average Loss:{:.4f},Accuarcy:{:.3f}\n".format(test_loss,100.0 * corrcet / len(test_loader.dataset)))

9.调用方法

#9 调用方法
for epoch in range(1,EPOCHS+1):
    train_model(model,DEVICE,train_loader,optimizer,epoch)
    test_model(model,DEVICE,test_loader)

输出结果

Train Epoch :1  	 Loss :2.296158
Train Epoch :1  	 Loss :0.023645
Test--Average Loss:0.0027,Accuarcy:98.690

Train Epoch :2  	 Loss :0.035262
Train Epoch :2  	 Loss :0.002957
Test--Average Loss:0.0027,Accuarcy:98.750

Train Epoch :3  	 Loss :0.029884
Train Epoch :3  	 Loss :0.000642
Test--Average Loss:0.0032,Accuarcy:98.460

Train Epoch :4  	 Loss :0.002866
Train Epoch :4  	 Loss :0.003708
Test--Average Loss:0.0033,Accuarcy:98.720

Train Epoch :5  	 Loss :0.000039
Train Epoch :5  	 Loss :0.000145
Test--Average Loss:0.0026,Accuarcy:98.840

Train Epoch :6  	 Loss :0.000124
Train Epoch :6  	 Loss :0.035326
Test--Average Loss:0.0054,Accuarcy:98.450

Train Epoch :7  	 Loss :0.000014
Train Epoch :7  	 Loss :0.000001
Test--Average Loss:0.0044,Accuarcy:98.510

Train Epoch :8  	 Loss :0.001491
Train Epoch :8  	 Loss :0.000045
Test--Average Loss:0.0031,Accuarcy:99.140

Train Epoch :9  	 Loss :0.000428
Train Epoch :9  	 Loss :0.000000
Test--Average Loss:0.0056,Accuarcy:98.500

Train Epoch :10  	 Loss :0.000001
Train Epoch :10  	 Loss :0.000377
Test--Average Loss:0.0042,Accuarcy:98.930

总结和改进

看完视频之后,老师确实讲得好,但是却没有讲明白为什么网络结构为什么要这样搭建,于是我又去看了看CNN,这个网络结构也能实现

#5 构建网络模型
class Digit(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1= nn.Conv2d(1,10,5)
        self.conv2=nn.Conv2d(10,20,5)
        self.fc1=nn.Linear(20*4*4,10)

    def forward(self,x):
       input_size=x.size(0)
       x=self.conv1(x)#输入batch_size 1*28*28 ,输出batch 10*24*24(28-5+1=24)
       x=F.relu(x) #激活函数,保持shape不变
       x=F.max_pool2d(x,2,2)#2是池化步长的大小,输出batch20*12*12

       x=self.conv2(x)#输入batch20*12*12 输出batch 20*10*10 (12-3+1=10)
       x=F.relu(x)
       x=F.max_pool2d(x,2,2)

       x=x.view(input_size,-1)#拉平,-1自动计算维度 20*10*10=2000

       x=self.fc1(x)#输入batch 2000 输出batch 500
       x=F.relu(x)


       ouput=F.log_softmax(x,dim=1)#计算分类后每个数字概率
       return ouput

用CNN之后,发现准确度一下子下降到了50%,百思不得其解,我猜可能是优化器的问题,就把优化器换成了SGD,结果果然效果更好

Train Epoch :17  	 Loss :0.014693
Train Epoch :17  	 Loss :0.000051
Test--Average Loss:0.0026,Accuarcy:99.010

在第17轮准确率居然到了99%,不知道为什么,先挖个坑,等我以后研究明白再来填

  • 2
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
### 回答1: 使用PyTorch搭建卷神经网络可以很容易地实现数字识别。首先需要导入PyTorch库,并加载数字数据集。然后,可以定义卷神经网络的结构,包括卷层、池化层、全连接层等。接着,可以定义损失函数和优化器,并进行模型训练。最后,可以使用测试集对模型进行评估。整个过程需要注意超参数的选择和调整,以达到最佳的识别效果。 ### 回答2: Pytorch是一个非常流行的深度学习框架,它的设计目的是为了能够快速地搭建神经网络模型,并进行训练和测试。本文将介绍如何使用Pytorch搭建卷神经网络来对数字进行识别。 首先,我们需要准备数字数据集,其中包含许多数字图片和其对应的标签。这里我们可以使用MNIST数据集,它是一个非常著名的数字识别数据集,包含60000张训练图片和10000张测试图片。Pytorch已经内置了该数据集。 接着,我们需要构建卷神经网络模型。对于数字识别任务,我们可以采用经典的LeNet-5模型,它是一个两层卷层和三层全连接层的模型。在Pytorch中,我们可以使用nn.Module类来定义模型。 模型定义如下: ``` import torch.nn as nn class LeNet(nn.Module): def __init__(self): super(LeNet, self).__init__() self.conv1 = nn.Conv2d(1, 6, 5) self.pool1 = nn.MaxPool2d(2) self.conv2 = nn.Conv2d(6, 16, 5) self.pool2 = nn.MaxPool2d(2) self.fc1 = nn.Linear(16 * 4 * 4, 120) self.fc2 = nn.Linear(120, 84) self.fc3 = nn.Linear(84, 10) def forward(self, x): x = self.conv1(x) x = nn.functional.relu(x) x = self.pool1(x) x = self.conv2(x) x = nn.functional.relu(x) x = self.pool2(x) x = x.view(-1, 16 * 4 * 4) x = self.fc1(x) x = nn.functional.relu(x) x = self.fc2(x) x = nn.functional.relu(x) x = self.fc3(x) return x ``` 上述代码定义了一个名为LeNet的模型,该模型由两个卷层、两个最大池化层和三个全连接层组成,并且采用ReLU作为激活函数。 接下来,我们需要定义损失函数和优化器。在这里,我们将采用交叉熵作为损失函数,优化器使用随机梯度下降(SGD)。 ``` criterion = nn.CrossEntropyLoss() optimizer = torch.optim.SGD(lenet.parameters(), lr=0.001, momentum=0.9) ``` 最后,我们需要定义一些训练和测试的函数,并开始训练模型。 ``` def train(model, dataloader, criterion, optimizer): model.train() running_loss = 0.0 correct = 0 total = 0 for i, data in enumerate(dataloader): inputs, labels = data optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() running_loss += loss.item() _, predicted = \ torch.max(outputs.data, dim=1) total += labels.size(0) correct += \ (predicted == labels).sum().item() epoch_loss = running_loss / len(dataloader.dataset) epoch_acc = correct / total return epoch_loss, epoch_acc def test(model, dataloader, criterion): model.eval() running_loss = 0.0 correct = 0 total = 0 with torch.no_grad(): for data in dataloader: inputs, labels = data outputs = model(inputs) loss = criterion(outputs, labels) running_loss += loss.item() _, predicted = \ torch.max(outputs.data, dim=1) total += labels.size(0) correct += \ (predicted == labels).sum().item() epoch_loss = running_loss / len(dataloader.dataset) epoch_acc = correct / total return epoch_loss, epoch_acc for epoch in range(num_epochs): train_loss, train_acc = \ train(lenet, train_dataloader, criterion, optimizer) valid_loss, valid_acc = \ test(lenet, valid_dataloader, criterion) print(f"Epoch {epoch + 1}: ") print(f"Train Loss={train_loss:.4f}, Train Acc={train_acc:.4f}") print(f"Valid Loss={valid_loss:.4f}, Valid Acc={valid_acc:.4f}") ``` 此时,我们的模型已经成功训练好了,可以使用测试集进行测试了。测试代码如下: ``` test_loss, test_acc = \ test(lenet, test_dataloader, criterion) print(f"Test Loss={test_loss:.4f}, Test Acc={test_acc:.4f}") ``` 在完成测试后,可以使用以下语句保存该模型: ``` torch.save(lenet.state_dict(), "lenet.pth") ``` 上述代码将保存模型的权重参数到文件lenet.pth中。 最后,我们可以使用以下代码加载该模型并对样本进行识别: ``` lenet.load_state_dict(torch.load("lenet.pth")) lenet.eval() sample, _ = test_dataset[0] outputs = lenet(torch.unsqueeze(sample, dim=0)) _, predicted = \ torch.max(outputs.data, dim=1) print(f"Predicted Label: {predicted.item()}") ``` 这段代码将加载保存的模型权重,并使用该模型识别测试集中第一张图片的标签。 ### 回答3: 使用pytorch搭建卷神经网络(Convolutional Neural Network, CNN识别数字,下面是详细步骤: 1. 数据集准备 使用MNIST数字数据集,该数据集由60,000个训练图像和10,000个测试图像组成。在pytorch中可以使用torchvision.datasets.MNIST()加载该数据集。 2. 构建CNN模型 使用pytorch的nn.Module来定义CNN模型,其中包括卷层、ReLU激活函数、池化层以及全连接层等。 3. 定义损失函数和优化器 定义交叉熵损失函数(CrossEntropyLoss)和随机梯度下降优化器(SGD,Stochastic Gradient Descent)。 4. 训练模型 使用dataloader来加载数据集,对模型进行训练,可以使用epoch的方式进行多次训练。 5. 评估模型 在测试集上进行预测,并计算准确率等指标,评估模型的性能。 下面是一份pytorch代码示例: ```python import torch import torch.nn as nn import torch.optim as optim import torchvision.datasets as datasets import torchvision.transforms as transforms # 加载MNIST数据集 transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform) test_dataset = datasets.MNIST(root='./data', train=False, download=True, transform=transform) batch_size = 32 train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True) test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=batch_size, shuffle=True) # 构建CNN模型 class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.conv1 = nn.Conv2d(in_channels=1, out_channels=32, kernel_size=5, stride=1, padding=2) self.relu1 = nn.ReLU() self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv2 = nn.Conv2d(in_channels=32, out_channels=64, kernel_size=5, stride=1, padding=2) self.relu2 = nn.ReLU() self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.fc1 = nn.Linear(7 * 7 * 64, 1024) self.relu3 = nn.ReLU() self.fc2 = nn.Linear(1024, 10) def forward(self, x): x = self.conv1(x) x = self.relu1(x) x = self.pool1(x) x = self.conv2(x) x = self.relu2(x) x = self.pool2(x) x = x.view(x.size(0), -1) x = self.fc1(x) x = self.relu3(x) x = self.fc2(x) return x model = CNN() print(model) # 定义损失函数和优化器 criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9) # 训练模型 num_epochs = 10 for epoch in range(num_epochs): for i, (images, labels) in enumerate(train_loader): optimizer.zero_grad() outputs = model(images) loss = criterion(outputs, labels) loss.backward() optimizer.step() if (i+1) % 100 == 0: print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}' .format(epoch+1, num_epochs, i+1, len(train_loader), loss.item())) # 评估模型 model.eval() with torch.no_grad(): correct = 0 total = 0 for images, labels in test_loader: outputs = model(images) _, predicted = torch.max(outputs.data, 1) total += labels.size(0) correct += (predicted == labels).sum().item() print('Accuracy of the network on the 10000 test images: {} %'.format(100 * correct / total)) ``` 通过训练和评估,我们可以得到一个准确率较高的数字识别CNN模型。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Sol-itude

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值