Python
文章平均质量分 54
Micheal超
努力!奋斗!
展开
-
python中Google S2算法的简单使用案例
python中Google S2算法示例 s2sphere原创 2023-03-01 17:16:38 · 1160 阅读 · 3 评论 -
python实现谱聚类算法
谱聚类的理论参考 谱聚类(spectral clustering)原理总结算法流程:sklearn对应的参数解说:sklearn.cluster.SpectralClusteringPython实现谱聚类import matplotlib.pyplot as pltfrom itertools import cycle, isliceimport numpy as npfrom sklearn.cluster import KMeansfrom sklearn import data原创 2021-04-13 09:57:36 · 932 阅读 · 4 评论 -
Matplotlib_库的安装
1.安装pip install matplotlib或者:pip install matplotlib -i https://pypi.doubanio.com/simple/ # 从豆瓣镜像中下载速度比较快一般配合numpy库使用:pip install numpy2.解决中文乱码的问题原因:出现中文乱码是因为 matplotlib 库中没有中文字体,所以显示出来的不像是真正的乱码,而是都为方框。解决方法参考博客:Python:matplotlib 中文乱码的解决方案3.绘制子图原创 2020-07-15 15:32:37 · 4209 阅读 · 1 评论 -
Argparse 使用
Argparse的使用:说明:argparse是一个Python模块:命令行选项、参数和子命令解析器。需要import argparse步骤创建 ArgumentParser() 对象调用 add_argument() 方法添加参数使用 parse_args() 解析添加的参数代码:import argparseif __name__ == '__main__': # 第一步:创建解析器 parser = argparse.ArgumentParser(des原创 2020-06-08 15:27:56 · 268 阅读 · 0 评论 -
深度聚类算法的结果比较
DEC(Unsupervised Deep Embedding for Clustering Analysis)IDEC(Improved Deep Embedded Clustering with Local Structure Preservation)DCEC(Deep Clustering with Convolutional Autoencoders)DFKM(Deep Fuzzy K-Means with Adaptive Loss and Entropy Regulari.原创 2020-05-28 09:13:57 · 2755 阅读 · 0 评论 -
python日志(Logger)的输出
方法一:import sysclass Logger(object): def __init__(self, filename='default.log', stream=sys.stdout): self.terminal = stream self.log = open(filename, 'a') # add content def write(self, message): self.terminal.write(messag原创 2020-05-11 11:12:52 · 2075 阅读 · 0 评论 -
调整兰德系数(Adjusted Rand index,ARI)的计算
介绍转载 2020-04-27 16:50:38 · 28810 阅读 · 4 评论 -
聚类精确度(Cluster Accuracy)
概念:原创 2020-04-24 09:28:33 · 16263 阅读 · 14 评论 -
NMI计算
介绍:NMI(Normalized Mutual Information), 标准化互信息。常用于聚类,度量 聚类结果 与 数据集真实情况 的相似度。NMI的值∈[0, 1]。值越大,说明聚类结果与数据集真实情况的相似度越大,聚类结果越好。如果算法结果很差则NMI值接近0。举例:假设对于17个样本点(v1,v2,...,v17)(v1,v2,...,v17)(v1,v2,...,v17)...原创 2020-04-23 13:35:17 · 4537 阅读 · 1 评论 -
Google Colab使用笔记
介绍:Google Colaboratory是谷歌开放的云服务平台,提供免费的CPU、GPU和TPU服务器。支持Pytorch、Tensorflow、Keras等框架平台风格类似于“jupyter notebook”。同时也可以运行部分Linux命令来辅助代码的运行。Colab可以访问Google Drive内容,且需要提前注册一下Google账户。Google Drive:http...原创 2020-04-07 23:22:56 · 612 阅读 · 0 评论 -
在Linux下如何安装Jupyter Notebook
第一步:安装Anaconda下载安装包:官网:https://www.anaconda.com/distribution/#download-section如果嫌慢的话,可以去清华镜像源下载:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/下载到本地后,运行bash Anaconda3-××××××××.sh安装完后,...原创 2020-01-14 18:07:22 · 3635 阅读 · 0 评论 -
Python常用的一些库(仅供参考)
前提:已经安装python库,能用pip install 命令来安装库。最好也要弄一个虚拟环境conda env list 或 conda info -e 查看当前存在哪些虚拟环境创建虚拟环境:conda create -n tensorflow python=3.6激活虚拟环境 : activate tensorflow如果需要安装很多packages,你会发现conda...原创 2019-12-08 23:54:49 · 215 阅读 · 0 评论 -
Python中.mat文件的读写操作
在python中可以使用scipy.io中的函数loadmat()读取mat文件,函数savemat保存文件。1. 保存成.mat文件import scipy.io as sio # 导入模块# save .matname = 'aaa.mat'x = [[1, 1, 1, 2], [1, 1, 1, 3], [1, 1, 1, 4]]y = [5, 6, 7, 8]sio.sav...原创 2019-10-23 20:01:04 · 1299 阅读 · 0 评论 -
Python 中的路径问题
Python中os模块的使用1. python路径的查看与修改查看路径:os.getcwd()修改路径:os.chdir("新的路径名")import os# 显示当前路径local_Path = os.getcwd()print('默认路径--> ',local_Path)# 跳转到当前工作路径为os.chdir("/home/micheal/Desktop")...原创 2019-10-23 19:20:54 · 10615 阅读 · 0 评论 -
Python的随机矩阵生成
导入模块random模块numpy中的random函数python中有两个模块可以生成随机数,该博客以的numpy模块为例进行生成随机数。(因为矩阵要生成大量的随机数据,故推荐使用numpy模块生成随机数)生成随机数(以矩阵为例)# 生成随机矩阵import numpy as np# 设置随机种子,保证每次生成的随机数一样rd = np.random.RandomState(...原创 2019-10-23 15:16:57 · 35890 阅读 · 0 评论 -
Python的随机矩阵生成
导入模块random模块numpy中的random函数python中有两个模块可以生成随机数,该博客以的numpy模块为例进行生成随机数。(因为矩阵要生成大量的随机数据,故推荐使用numpy模块生成随机数)生成随机数(以矩阵为例)# 生成随机矩阵import numpy as np# 设置随机种子,保证每次生成的随机数一样rd = np.random.RandomState(...原创 2020-01-06 11:18:22 · 5923 阅读 · 0 评论 -
Python_基础1
Python特点简单、易学Python既支持面向过程的编程,也支持面向对象的编程灵活的解释运行方式(可移植性【Python 会被编译成与操作系统相关的二进制代码,然后再解释执行。这种方式和java 类似,大大提高了执行速度,也实现了跨平台。】、安全性、灵活性)强类型、动态语言类型免费、开源、开放丰富的库(丰富的标准库, 多种多样的扩展库)可扩展性。 可嵌入到 C 和 C++语言。...原创 2019-10-13 00:25:10 · 197 阅读 · 0 评论 -
Tensorflow(GPU版安装后代码测试)
测试代码1import tensorflow as tfimport numpyimport kerasimport sklearnprint("keras version : ",keras.__version__) # 测试keras是否安装成功(pip install --user keras)print("sklearn version : ",sklearn.__ve...原创 2019-09-23 19:52:23 · 2470 阅读 · 0 评论 -
Anaconda+用conda创建python虚拟环境
首先在所在系统中安装Anaconda。可以打开命令行输入conda -V 或者 conda --version 检验是否安装以及当前conda的版本。conda常用的命令。1)conda list 查看安装了哪些包。2)conda env list 或 conda info -e 查看当前存在哪些虚拟环境3)conda update conda 检查更新当前conda 创建P...转载 2019-09-14 22:03:14 · 418 阅读 · 0 评论 -
Python - PyCharm部分快捷键
1.pycharm中使用anaconda部署python环境在pycharm中,单击“File”,然后选择“Settings”,然后单击,如下所示:在“Settings”窗口中选择图中箭头所指的选项,然后会看到右侧有“Project Interpreter”,选择你的anaconda中python.exe的位置,自己进行选择即可,然后就会得到如上的界面。2.部分快捷键Ctr...原创 2019-07-23 11:43:49 · 255 阅读 · 0 评论 -
Python - OpenCV库的安装
安装以管理员的方式打开“Anaconda Prompt”输入下载命令“pip install opencv-python”如果指明要下某版本的OpenCV,可以加上版本号。如:“pip install opencv-python==3.4.1.15”除此以外,最好再下载一个库,“pip install opencv-contrib-python==3.4.1.15”检测是否安装成...原创 2019-07-22 19:57:17 · 1518 阅读 · 0 评论 -
Python_随笔笔记_Python基础1
测试1 : 画出 y=xxy=x^xy=xx 的图像import numpy as npfrom matplotlib import pyplot as plt# x为0到2的等差数列x = np.linspace(0, 2, 1000)y = x**xplt.plot(x, y, 'r', linewidth=3)plt.show()补充:1)了解一下Numpy中的两...原创 2019-07-08 14:28:03 · 292 阅读 · 0 评论 -
Anaconda的安装与使用(Windows下)
Anaconda (一个开源的Python发行版本)Anaconda指的是一个开源的Python发行版本,其包含了conda、Python等180多个科学包及其依赖项。Python:蟒蛇;Anaconda:水莽安装环境Windows7(其实Windows10也无妨,但建议是64位系统)Anaconda3-4.2.0-Windows-x86_64.exe ( 官网 有最新的版本,安装...原创 2019-01-26 00:42:40 · 505 阅读 · 0 评论