测试1 : 画出 y = x x y=x^x y=xx 的图像
import numpy as np
from matplotlib import pyplot as plt
# x为0到2的等差数列
x = np.linspace(0, 2, 1000)
y = x**x
plt.plot(x, y, 'r', linewidth=3)
plt.show()
补充:
1)了解一下Numpy中的两个方法 linspace 和 arange
print(np.linspace(1, 100, 100, dtype = “int”)) # 从1到100,等量取100个数据
print("-"*100)
print(np.arange(1, 101, 1)) # 从1到101,每隔 1 取一个数据
2)通过上述函数绘制可以看出函数时先递减后递增的,进而可以研究函数 y = x x y = x^x y=xx 的一些函数性质。
测试2 : 画出一个线性函数 y = 2 ∗ x + 5 y = 2*x + 5 y=2∗x+5
x = np.arange(0, 5, 0.5, dtype=float) # 从0到5 每0.5取一个float类型的值
y = 2*x + 5
plt.plot(x, y, 'r', linewidth=2)
# plt.show()
# 其他设置
plt.title("Matplotlib Demo")
plt.xlabel("X Value")
plt.ylabel("Y Value")
plt.show()
补充:
Matplotlib功能挺多的,读者可以去做更多的了解
测试3 : 绘制随机点
#构造数据点
data = np.random.rand(10, 2) # 随机生成10行2列的数据
x = data[:,0] # 第一列数据
y = data[:,1] # 第二列数据
# print(data)
# print(x)
# print(y)
plt.plot(x, y, color="green", marker="o", linestyle = "none", markersize=5)
plt.show()
测试4 :画一个由点组成的圆
data = np.random.rand(10000,2)*2 - 1 # 让数据点范围在[-1, 1]之间
x = data[:,0]
y = data[:,1]
index = x**2 + y**2 < 1
plt.plot(x[index], y[index], 'go', markersize = 3)
plt.show()
# 去掉一个洞
hole = x**2 + y**2 <= 0.25
index_new = np.logical_and(index, ~hole) # 逻辑与操作(小于1,不小于0.25)
plt.plot(x[index_new], y[index_new], 'go', markersize = 3)
plt.show()
测试5 : 绘制直方图
p = np.random.rand(1000)
# 输出前1000个数据,并以小数形式输出(而不是科学计数法)
np.set_printoptions(edgeitems = 1000, suppress = True)
# print(p)
plt.hist(p, bins = 10, color='b', edgecolor='k')
plt.show()
# 案例(验证中心极限定理)
N = 1000
z = np.zeros(N) # 将1000个数据初始化为0,传给z
times = 10000 # 迭代次数
for i in range(times):
z += np.random.rand(N)
z /= times
plt.hist(z, bins = 20, color='g', edgecolor='k')
plt.show()
测试6 : Pandas
import pandas as pd
import os
data_1 = np.random.rand(3, 4)
print(data_1)
print(type(data_1))
print("="*50)
# ndArray 转化成 DataFrame (数组转化成表格)
data_2 = pd.DataFrame(data = data_1, columns = list("大脸鸡排"))
print(data_2)
print(type(data_2))
print(data_2[list("脸排")]) # 输出特定的列
# 保存
data_2.to_csv("data.cvs", index= False, header=True)
print(os.path.realpath("data.cvs")) #返回文件真实路径
print("保存文件成功!")