Keras
文章平均质量分 94
Micheal超
努力!奋斗!
展开
-
Ubuntu20.04 安装 CUDA10.1 和 CUDNN7.6.5
Ubuntu20.04 安装 CUDA10.1 和 CUDNN7.6.5原创 2022-09-17 17:10:01 · 3825 阅读 · 0 评论 -
Keras下使用多GPU训练模型
Keras 2.X版本后可以很方便的支持使用多GPU进行训练了,使用多GPU可以提高我们的训练过程,比如加速和解决内存不足问题。我的tensorflow_gpu=1.15.0; Keras==2.1.6涉及的代码设置可以使用的GPU编号import osos.environ["CUDA_VISIBLE_DEVICES"] = "2,3" # 仅让id=2,3的GPU可被使用当你的电脑中有多块GPU时, keras.utils.multi_gpu_model 中提供有内置函数,该函数可以产生任意原创 2020-11-09 15:46:23 · 851 阅读 · 0 评论 -
keras中使用ImageDataGenerator对MINST数据集数据增强
使用数据增强过拟合的原因是学习样本太少,导致无法训练出能够泛化到新数据的模型。如果拥有无限的数据,那么模型就能够观察到数据分布的所有内容,这样就永远不会过拟合。数据增强是从现有的训练样本中生成更多的训练数据,其方法是利用多种能够生成可信图像的随机变换来增加样本。Keras中可以通过ImageDataGenerator实现对样本的随机变换(以MNIST为例)ImageDataGenerator的参数说明:参考博客:1.keras的图像预处理全攻略(二)—— ImageDataGenera原创 2020-10-01 17:56:41 · 665 阅读 · 0 评论 -
Keras自定义层
keras已经有很多封装好的库供我们调用,但是有些时候我们需要的操作keras并没有,这时就需要学会自定义keras层了1.Lambda从函数的角度上来说lambda表达式的作用:原创 2020-07-31 16:58:26 · 656 阅读 · 0 评论 -
3.2自编码器(变分自编码器,VAE)
拓展(Keras + fashion_mnist)承接上一篇博客:3.自编码器(变分自编码器,VAE)# 加载库import numpy as npimport matplotlib.pyplot as pltfrom keras.layers import Input, Dense, Lambdafrom keras.models import Model, Sequential...原创 2020-04-07 22:25:43 · 255 阅读 · 0 评论 -
2.自编码器(去噪自编码器,DAE)
介绍:自编码器(AutoEncoder)是深度学习中的一类无监督学习模型,有encoder和decoder两个部分组成encoder 将原始表示编码成隐层表示decoder 将隐层表示解码成原始表示训练目标为最小化重构误差隐层特征维度一般低于原始特征维度,降维的同时学习更稠密更有意义的表示自编码器主要是一种思想,encoder和decoder可以由全连接层、CNN或RNN等模型实现...原创 2020-04-01 12:41:11 · 2502 阅读 · 0 评论 -
1.自编码器(keras+mnist)
介绍自编码器(autoencoder, AE)是一类在半监督学习和非监督学习中使用的人工神经网络(准确地来说自编码器是一个自监督的算法,并不是一个无监督算法),其核心的作用是能够学习到输入数据的深层表示。自编码器包含编码器(encoder)和解码器(decoder)两部分。自编码器的相关模型:收缩自编码器(undercomplete autoencoder)、正则自编码器(regulari...原创 2020-03-31 11:13:32 · 871 阅读 · 0 评论 -
8. keras - 绘制网络结构
前提安装pydot and graphvizpydot的安装:pip install pydotgraphviz的安装:graphviz需要在官网安装,安装后需要添加环境变量,程序所在目录的bin文件夹加入系统变量(参考:Graphviz安装及简单使用)程序import numpy as npfrom keras.datasets import mnistfrom keras...原创 2019-11-05 19:52:35 · 836 阅读 · 1 评论 -
7. keras - 模型的保存与载入
需要安装h5py:pip install h5py保存模型import numpy as npfrom keras.datasets import mnistfrom keras.utils import np_utilsfrom keras.models import Sequentialfrom keras.layers import Densefrom keras.opti...原创 2019-11-05 15:46:03 · 300 阅读 · 0 评论 -
6. Keras-RNN应用
案例:将RNN模型应用于手写数字识别中说明:RNN用于图像识别方面效果可能没有CNN好。程序导入库import numpy as npfrom keras.datasets import mnistfrom keras.utils import np_utilsfrom keras.models import Sequentialfrom keras.layers import...原创 2019-11-05 15:30:01 · 250 阅读 · 0 评论 -
5. Keras - CNN应用于手写数字识别
程序导入库import numpy as npfrom keras.datasets import mnistfrom keras.utils import np_utilsfrom keras.models import Sequentialfrom keras.layers import Dense,Dropout,Convolution2D,MaxPooling2D,Flat...原创 2019-11-05 15:17:22 · 229 阅读 · 0 评论 -
4. 使用Keras-神经网络来进行MNIST手写数字分类
程序导入库import numpy as npimport kerasfrom keras.datasets import mnist # mnist数据集from keras.utils import np_utils # kerass提供的工具包from keras.models import Sequentialfrom keras.layers import Dense...原创 2019-11-05 14:46:00 · 1296 阅读 · 0 评论 -
3. 使用Keras-神经网络来拟合非线性模型
代码:导入包import kerasimport numpy as npimport matplotlib.pyplot as plt# Sequential按顺序构成的模型from keras.models import Sequential # Dense全连接层from keras.layers import Dense,Activationfrom keras.opt...原创 2019-11-05 12:37:28 · 2935 阅读 · 0 评论 -
2. 使用keras-神经网络来做线性回归问题
代码:导入库:import kerasimport numpy as npimport matplotlib.pyplot as pltfrom keras.models import Sequential # 按顺序构成的模型from keras.layers import Dense # 全连接层生成随机数# 使用Numpy生成随机点x_data = np.ran...原创 2019-11-05 12:10:25 · 713 阅读 · 0 评论 -
1. Keras环境的安装
本人电脑使用的是Windows10系统,提前安装了Anaconda安装keras2.1.6安装完成之后,你可以用来查看keras是否安装成功。除此以外,建议安装一些其他的常用库一个绘制数据图的库。对于数据科学家或分析师非常有用。Pandas是进行数据清晰/整理的最好工具Scikit-Learn是Python常用的机器学习工具包,提供了完善的机器学习工具箱,支持数据预处理、分类、回归、聚类、预测和模型分析等强大机器学习库,其依赖于Numpy、Scipy和Matplotlib等。原创 2019-11-05 10:22:25 · 4916 阅读 · 0 评论