2.自编码器(去噪自编码器,DAE)

介绍:

自编码器(AutoEncoder)是深度学习中的一类无监督学习模型,有encoder和decoder两个部分组成

  • encoder 将原始表示编码成隐层表示
  • decoder 将隐层表示解码成原始表示
  • 训练目标为最小化重构误差
  • 隐层特征维度一般低于原始特征维度,降维的同时学习更稠密更有意义的表示

自编码器主要是一种思想,encoder和decoder可以由全连接层、CNN或RNN等模型实现。以下使用Keras,用CNN实现自编码器,通过学习从加噪图片到原始图片的映射,完成图像去噪任务。

代码:

在这里插入图片描述使用keras+mnist搭建自编码器,使用卷积层参与搭建。

import numpy as np

from keras.datasets import mnist
©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页