【用户画像】【流程与方法】

本文介绍了用户画像的流程和方法,包括目标分析、体系构建、画像建立等步骤。用户画像涉及人口属性、兴趣和地理位置等多个维度,通过标签体系进行抽象。在构建过程中,重点关注标签的准确率、覆盖率和时效性。用户画像被广泛应用于数据分析,如广告投放和个性化推荐,其效果通过A/B测试等手段进行评估。
摘要由CSDN通过智能技术生成

一、写在前面

最近看JD发现想去的岗位需要了解用户画像体系,就找找一些书籍和文章,利用碎片时间记录一下学习历程。在摸索学习中,如果哪里写的不合理,可以评论留言私信,欢迎一起学习讨论。

二、概述

用户画像的核心工作就是给用户加标签,标签通常是人为规定的高度精炼的特征标识,如年龄、性别、地域、兴趣爱好等。这些标签集合就能抽象出一个用户的信息全貌。
在这里插入图片描述

百度用户画像粘了一张图。如图所示是某个用户的标签集合,每个标签分别描述了该用户的一个维度,各个维度之间相互联系,共同构成对用户的一个整体描述。

三、用户画像流程

3.1 整体流程

对构建用户画像的方法进行总结归纳,发现用户画像的构建一般可以分为目标分析、体系构建、画像建立三步。

画像构建技术图
在这里插入图片描述

3.2 标签体系

首先标签分为几个大类,每个大类下进行逐层细分。在构建标签时,只需要构建最下层的标签,就可以映射到上面两级标签。
在这里插入图片描述
上层标签都是抽象的标签集合,一般没有实用意义,只有统计意义。

用于广告投放和精准营销的一般是底层标签,对于底层标签有两个要求:一个是每个标签只能表示一种含义,避免标签之间的重复和冲突,便于计算机处理;另一个是标签必须有一定的语义,方便相关人员理解每个标签的含义。

标签的粒度也是需要注意的,标签粒度太粗会没有区分度,粒度过细会导致标签体系过于复杂不具有通用性。

常见的底层标签
在这里插入图片描述

各类标签构建的优先级 。构建的优先级需要综合考虑业务需求、构建难易程度,业务需求各有不,这里说说优先级排序方法主要依据构建的难易程度和各类标签的依存关系。

在这里插入图片描述

基于原始数据首先构建的是事实标签,事实标签可以从数据库直接过去,或通过简单的统计得到。这类标签构建难度低、实际含义明确,且部分标签可用作后续标签挖掘的基础特征。(产品购买次数可以用作为用户购物偏好的输入特征数据)

事实标签的构建过程,也是对数据加深理解的过程。对数据进行统计的同时,不仅完成了数据的处理与加工,也对数据的分布有了一定的了解,为高级标签的构造做好了准备。

模型标签是标签体系的核心,也是用户画像工作量最大的部分,大多数用户标签的核心都是模型标签。

最后是高级标签,基于事实标签和模型标签进行统计建模得出的,它的构造与实际的业务指标紧密联系。

四、 构建用户画像

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值