链接
题意:给一个奇数长度的数组,操作是选择一个位置,删除其相邻的数,并将该位置的数赋值为相邻数的和,求最终剩下的一个数字最大为多少
思路:最简单的取值方式显然是取所有的下标为奇数的数字的和以及取所有下标为偶数加上下标1的和,但是这样的话这题似乎就太简单了,于是我们开始考虑能否通过一些手段构造出其余的取值方法。经过不断肉眼观察,我们可以发现,当利用最后一个数字为中间数时可以实现包含奇数和偶数的构造方法,形如1+3+5+6,1+3+4+6,1+2+4+6……,于是我们可以通过求出奇数项和偶数项的前缀和计算得出最大值。
代码:
#include <bits/stdc++.h>
#define fi first
#define se second
#define pb push_back
using namespace std;
using ll = long long;
using PII = pair <int, int>;
using vi = vector <int>;
const int N = 2e5 + 10;
const ll mod = 1e9 + 7;
int t, n;
ll a[N], op[N], ep[N];
int main() {
cin >> n;
for(int i = 1; i <= n; i++) scanf("%lld", &a[i]);
ll res = 0;
for(int i = 1; i <= n; i++) {
ep[i] = ep[i - 1];
op[i] = op[i - 1];
if(i & 1) op[i] += a[i];
else ep[i] += a[i];
}
for(int i = 1; i <= n; i++) {
res = max(res, op[i] + ep[n] - ep[i]);
}
for(int i = 1; i <= n; i++) {
res = max(res, ep[i] + op[n] - op[i]);
}
cout << res;
return 0;
}