Codeforces Round #655 (Div. 2) D. Omkar and Circle

给定一个奇数长度的数组,每次操作可以选择一个位置,删除其相邻的数并将该位置的数更新为相邻数的和。目标是找到一种操作序列,使最后剩下的一个数字尽可能大。通过计算奇数下标和偶数下标元素的前缀和,可以找到最佳的取值策略,从而求得最大值。
摘要由CSDN通过智能技术生成

链接
题意:给一个奇数长度的数组,操作是选择一个位置,删除其相邻的数,并将该位置的数赋值为相邻数的和,求最终剩下的一个数字最大为多少
思路:最简单的取值方式显然是取所有的下标为奇数的数字的和以及取所有下标为偶数加上下标1的和,但是这样的话这题似乎就太简单了,于是我们开始考虑能否通过一些手段构造出其余的取值方法。经过不断肉眼观察,我们可以发现,当利用最后一个数字为中间数时可以实现包含奇数和偶数的构造方法,形如1+3+5+6,1+3+4+6,1+2+4+6……,于是我们可以通过求出奇数项和偶数项的前缀和计算得出最大值。
代码:

#include <bits/stdc++.h>
#define fi first
#define se second
#define pb push_back
using namespace std;
using ll = long long;
using PII = pair <int, int>;
using vi = vector <int>;
const int N = 2e5 + 10;
const ll mod = 1e9 + 7;
int t, n;
ll a[N], op[N], ep[N];
int main() {
	cin >> n;
	for(int i = 1; i <= n; i++) scanf("%lld", &a[i]);
	ll res = 0;
	for(int i = 1; i <= n; i++) {
		ep[i] = ep[i - 1];
		op[i] = op[i - 1];
		if(i & 1) op[i] += a[i];
		else ep[i] += a[i];
	}
	for(int i = 1; i <= n; i++) {
		res = max(res, op[i] + ep[n] - ep[i]);
	}
	for(int i = 1; i <= n; i++) {
		res = max(res, ep[i] + op[n] - op[i]);
	}
	cout << res;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值