Multiclass Support Vector Machine exercise
# Run some setup code for this notebook.
from __future__ import print_function
import random
import numpy as np
from cs231n.data_utils import load_CIFAR10
import matplotlib.pyplot as plt
# This is a bit of magic to make matplotlib figures appear inline in the
# notebook rather than in a new window.
%matplotlib inline
plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
# Some more magic so that the notebook will reload external python modules;
# see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython
%load_ext autoreload
%autoreload 2
首先,这里还是跟上一个作业一样,要注意from __future__ import print_function
要放到最上面(我也不知道为什么,看提示改的)
# Load the raw CIFAR-10 data.
cifar10_dir = 'cs231n/datasets/cifar-10-batches-py'
# Cleaning up variables to prevent loading data multiple times (which may cause memory issue)
try:
del X_train, y_train
del X_test, y_test
print('Clear previously loaded data.')
except:
pass
X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir
# As a sanity check, we print out the size of the training and test data.
print('Training data shape: ', X_train.shape)
print('Training labels shape: ', y_train.shape)
print('Test data shape: ', X_test.shape)
print('Test labels shape: ', y_test.shape)
Training data shape: (50000, 32, 32, 3)
Training labels shape: (50000,)
Test data shape: (10000, 32, 32, 3)
Test labels shape: (10000,)
# Visualize some examples from the dataset.
# We show a few examples of training images from each class.
classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
num_classes = len(classes)
samples_per_class = 7
for y, cls in enumerate(classes):
idxs = np.flatnonzero(y_train == y)
idxs = np.random.choice(idxs, samples_per_class, replace=False)
for i, idx in enumerate(idxs):
plt_idx = i * num_classes + y + 1
plt.subplot(samples_per_class, num_classes, plt_idx)
plt.imshow(X_train[idx].astype('uint8'))
plt.axis('off')
if i == 0:
plt.title(cls)
plt.show()
这上面的代码都和之前一模一样,所以不多赘述。
下面开始把样本分成三类,1.训练集 2.验证集3.测试集
# Split the data into train, val, and test sets. In addition we will
# create a small development set as a subset of the training data;
# we can use this for development so our code runs faster.
num_training = 49000
num_validation = 1000
num_test = 1000
num_dev = 500
# Our validation set will be num_validation points from the original
# training set.
mask = range(num_training, num_training + num_validation) #range生成val索引序列
X_val = X_train[mask]
y_val = y_train[mask]
# Our training set will be the first num_train points from the original
# training set.
mask = range(num_training)#range生成train的索引序列
X_train = X_train[mask]
y_train = y_train[mask]
# We will also make a development set, which is a small subset of
# the training set.
mask = np.random.choice(num_training, num_dev, replace=False) #随机从train挑选500个dev
X_dev = X_train[mask]
y_dev = y_train[mask]
# We use the first num_test points of the original test set as our
# test set.
mask = range(num_test) #生成test索引序列
X_test = X_test[mask]
y_test = y_test[mask]
print('Train data shape: ', X_train.shape)
print('Train labels shape: ', y_train.shape)
print('Validation data shape: ', X_val.shape)
print('Validation labels shape: ', y_val.shape)
print('Test data shape: ', X_test.shape)
print('Test labels shape: ', y_test.shape)
Train data shape: (49000, 32, 32, 3)
Train labels shape: (49000,)
Validation data shape: (1000, 32, 32, 3)
Validation labels shape: (1000,)
Test data shape: (1000, 32, 32, 3)
Test labels shape: (1000,)
同理,我们还是把他们后面几个维度flatten,常用 np.reshape(X_train, (X_train.shape[0], -1))
来把后面的维度合并(记下来)
# Preprocessing: reshape the image data into rows
X_train = np.reshape(X_train, (X_train.shape[0], -1))
X_val = np.reshape(X_val, (X_val.shape[0], -1))
X_test = np.reshape(X_test, (X_test.shape[0], -1))
X_dev = np.reshape(X_dev, (X_dev.shape[0], -1))
# As a sanity check, print out the shapes of the data
print('Training data shape: ', X_train.shape)
print('Validation data shape: ', X_val.shape)
print('Test data shape: ', X_test.shape)
print('dev data shape: ', X_dev.shape)
Training data shape: (49000, 3072)
Validation data shape: (1000, 3072)
Test data shape: (1000, 3072)
dev data shape: (500, 3072)
下面是一步预处理步骤,我们计算每个像素点在49000副图像里的均值。
mean_image = np.mean(X_train, axis=0)
print(mean_image[:10]) # 打印前10个像素点的平均值
plt.figure(figsize=(4,4)) #图像大小
plt.imshow(mean_image.reshape((32,32,3)).astype('uint8')) # visualize the mean image
plt.show()
(3072,)
[130.64189796 135.98173469 132.47391837 130.05569388 135.34804082
131.75402041 130.96055102 136.14328571 132.47636735 131.48467347]
所有图像要减去均值图像的值,并且为了不引入b偏置项,我们把样本hstack一列全1项,这样就相当于有个b了。
# second: subtract the mean image from train and test data
X_train -= mean_image
X_val -= mean_image
X_test -= mean_image
X_dev -= mean_image
# third: append the bias dimension of ones (i.e. bias trick) so that our SVM
# only has to worry about optimizing a single weight matrix W.
X_train = np.hstack([X_train, np.ones((X_train.shape[0], 1))])
X_val = np.hstack([X_val, np.ones((X_val.shape[0], 1))])
X_test = np.hstack([X_test, np.ones((X_test.shape[0], 1))])
X_dev = np.hstack([X_dev, np.ones((X_dev.shape[0], 1))])
print(X_train.shape, X_val.shape, X_test.shape, X_dev.shape)
SVM分类器
本节的代码将全部写在cs231n / classifiers / linear_svm.py中。
如您所见,我们已经预填充了函数compute_loss_naive,该函数使用for循环来评估多类SVM损失函数。
# Evaluate the naive implementation of the loss we provided for you:
from cs231n.classifiers.linear_svm import svm_loss_naive
import time
# generate a random SVM weight matrix of small numbers
W = np.random.randn(3073, 10) * 0.0001
loss, grad = svm_loss_naive(W, X_dev, y_dev, 0.000005)
print('loss: %f' % (loss, ))
打开.py文件,找到简单svm算法,发现他已经写出来了loss的算法(这里用的是线性分类和svmloss去构建模型,下面这部分反向传播求梯度有些复杂,需要耐心一点计算)
这边我们要先计算一下导数dW:(为了与编程一致,我这边写成
y
=
x
w
y=xw
y=xw(按照代码里的正向传播来写)的形式:
L
i
=
1
N
∑
j
≠
y
i
m
a
x
(
0
,
s
j
−
s
y
i
+
Δ
)
+
1
2
λ
∥
w
∥
2
L_{i} =\frac{1}{N}\sum_{j\neq y_i}max(0,s_j-s_{y_i}+\Delta)+\frac{1}{2}\lambda\Vert w\Vert^{2}
Li=N1j=yi∑max(0,sj−syi+Δ)+21λ∥w∥2
Δ \Delta Δ为选定的某个阈值。
L
i
=
1
N
∑
j
≠
y
i
m
a
x
(
0
,
x
i
w
j
−
x
i
w
y
i
+
Δ
)
+
1
2
λ
∥
w
∥
2
L_{i} =\frac{1}{N}\sum_{j\neq y_i}max(0,x_iw_j-x_iw_{y_{i}}+\Delta)+\frac{1}{2}\lambda\Vert w\Vert^{2}
Li=N1j=yi∑max(0,xiwj−xiwyi+Δ)+21λ∥w∥2
于是W的每一列可以表示为:
[
S
00
S
01
.
.
.
S
0
C
S
10
S
11
.
.
.
S
1
C
.
.
.
.
.
.
.
.
.
.
.
.
S
N
0
S
N
1
.
.
.
S
N
1
]
=
[
.
.
.
X
0
.
.
.
.
.
.
X
1
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
X
N
.
.
.
]
[
⋮
⋮
⋮
W
0
W
1
.
.
.
W
c
⋮
⋮
⋮
]
\begin{bmatrix} S_{00} &S_{01}&...&S_{0C} \\ S_{10} &S_{11}&...&S_{1C}\\ ...&...&...&...\\ S_{N0} &S_{N1}&...&S_{N1} \end{bmatrix} = \begin{bmatrix} ...&X_0&...\\...&X_1&...\\...&...&...\\...&X_N&...\end{bmatrix}\begin{bmatrix} \vdots&\vdots&&\vdots\\W_0&W_1&...&W_c\\\vdots&\vdots&&\vdots\end{bmatrix}\quad
⎣⎢⎢⎡S00S10...SN0S01S11...SN1............S0CS1C...SN1⎦⎥⎥⎤=⎣⎢⎢⎡............X0X1...XN............⎦⎥⎥⎤⎣⎢⎢⎡⋮W0⋮⋮W1⋮...⋮Wc⋮⎦⎥⎥⎤
在每一张训练集i的图片循环(第一层循环)
L
i
=
∑
j
≠
y
i
m
a
x
(
0
,
x
i
w
j
−
x
i
w
y
i
+
Δ
)
L_i =\sum_{j\neq y_i}max(0,x_iw_j-x_iw_{y_{i}}+\Delta)
Li=j=yi∑max(0,xiwj−xiwyi+Δ)
又在j的循环(第二层循环),求导:
L i ∂ w j = { x i T x i w j − x i w y i > 0 0 x i w j − x i w y i ⩽ 0 \frac{L_i}{\partial w_j} =\left\{ \begin{aligned} x_i^T & &x_iw_j-x_iw_{y_{i}}>0 \\ 0 & &x_iw_j-x_iw_{y_{i}}\leqslant0 \\ \end{aligned} \right. ∂wjLi={xiT0xiwj−xiwyi>0xiwj−xiwyi⩽0
L
i
∂
w
y
i
=
−
x
i
T
x
i
w
j
−
x
i
w
y
i
>
0
\frac{L_i}{\partial w_{yi}}=-x_i^T \quad x_iw_j-x_iw_{y_{i}}>0
∂wyiLi=−xiTxiwj−xiwyi>0
如果
x
i
w
j
−
x
i
w
y
i
+
Δ
>
0
x_iw_j-x_iw_{y_{i}}+\Delta>0
xiwj−xiwyi+Δ>0,那么根据求导有:
d w j = d w j + x i T dw_j=dw_j+x_i^T dwj=dwj+xiT
d w y i = d w y i − x i T dw_{yi}=dw_{yi}-x_i^T dwyi=dwyi−xiT
最后还要加上
λ
w
\lambda w
λw,因此:
d
W
=
1
N
d
W
+
λ
w
dW =\frac{1}{N} dW+\lambda w
dW=N1dW+λw
这里的j代表W矩阵的每一列, x i x_i xi代表不同的训练样本
def svm_loss_naive(W, X, y, reg):
"""
Structured SVM loss function, naive implementation (with loops).
Inputs have dimension D, there are C classes, and we operate on minibatches
of N examples.
Inputs:
- W: A numpy array of shape (D, C) containing weights.
- X: A numpy array of shape (N, D) containing a minibatch of data.
- y: A numpy array of shape (N,) containing training labels; y[i] = c means
that X[i] has label c, where 0 <= c < C.
- reg: (float) regularization strength
Returns a tuple of:
- loss as single float
- gradient with respect to weights W; an array of same shape as W
"""
dW = np.zeros(W.shape) # initialize the gradient as zero
# compute the loss and the gradient
num_classes = W.shape[1]#10类
num_train = X.shape[0] #num_train表示训练样本个数
loss = 0.0
for i in range(num_train):
scores = X[i].dot(W)
correct_class_score = scores[y[i]]
for j in range(num_classes):
if j == y[i]: #j是真实样本
continue
margin = scores[j] - correct_class_score + 1 # note delta = 1
if margin > 0:
loss +=margin
dW[:,j]+=X[i,:].T
dW[:,y[i]]+=-X[i,:].T
# Right now the loss is a sum over all training examples, but we want it
# to be an average instead so we divide by num_train.
loss /= num_train
dW /= num_train
# Add regularization to the loss.
loss += 0.5*reg * np.sum(W * W) #Np.sum(a*a)逐项相乘
dW += reg*W
#############################################################################
# TODO: #
# Compute the gradient of the loss function and store it dW. #
# Rather that first computing the loss and then computing the derivative, #
# it may be simpler to compute the derivative at the same time that the #
# loss is being computed. As a result you may need to modify some of the #
# code above to compute the gradient. #
#############################################################################
return loss, dW
修改好上面之后,我们运行一下,检查一些输出grad的维度是不是与W的维度一样:
# Evaluate the naive implementation of the loss we provided for you:
from cs231n.classifiers.linear_svm import svm_loss_naive
import time
# generate a random SVM weight matrix of small numbers
W = np.random.randn(3073, 10) * 0.0001
loss, grad = svm_loss_naive(W, X_dev, y_dev, 0.000005)
print('loss: %f' % (loss, ))
print('gradient:\n',grad.shape)
进行梯度检查:
# Once you've implemented the gradient, recompute it with the code below
# and gradient check it with the function we provided for you
# Compute the loss and its gradient at W.
loss, grad = svm_loss_naive(W, X_dev, y_dev, 0.0)
# Numerically compute the gradient along several randomly chosen dimensions, and
# compare them with your analytically computed gradient. The numbers should match
# almost exactly along all dimensions.
from cs231n.gradient_check import grad_check_sparse
f = lambda w: svm_loss_naive(w, X_dev, y_dev, 0.0)[0]
grad_numerical = grad_check_sparse(f, W, grad)
# do the gradient check once again with regularization turned on
# you didn't forget the regularization gradient did you?
loss, grad = svm_loss_naive(W, X_dev, y_dev, 5e1)
f = lambda w: svm_loss_naive(w, X_dev, y_dev, 5e1)[0]
grad_numerical = grad_check_sparse(f, W, grad)
numerical: 23.085385 analytic: 23.085385, relative error: 1.172930e-11
numerical: -1.236521 analytic: -1.236521, relative error: 7.884760e-11
numerical: 6.910923 analytic: 6.845186, relative error: 4.778747e-03
numerical: -19.968839 analytic: -19.968839, relative error: 7.256444e-12
numerical: 11.331944 analytic: 11.331944, relative error: 2.770798e-11
numerical: -3.385788 analytic: -3.385788, relative error: 3.976704e-11
numerical: 20.107681 analytic: 20.107681, relative error: 7.589920e-12
numerical: 1.887162 analytic: 1.887162, relative error: 7.564024e-11
numerical: 21.488876 analytic: 21.417529, relative error: 1.662846e-03
numerical: -13.144394 analytic: -13.144394, relative error: 6.459439e-12
numerical: 30.272869 analytic: 30.272869, relative error: 5.525255e-12
numerical: 20.681273 analytic: 20.681273, relative error: 1.626950e-11
numerical: -3.407003 analytic: -3.374702, relative error: 4.762895e-03
numerical: 12.234011 analytic: 12.234011, relative error: 1.130557e-11
numerical: -2.756436 analytic: -2.756436, relative error: 9.104975e-11
numerical: 19.967492 analytic: 19.967492, relative error: 7.247770e-12
numerical: 32.355688 analytic: 32.355688, relative error: 2.117155e-11
numerical: 7.605475 analytic: 7.605475, relative error: 3.218538e-11
numerical: -3.685143 analytic: -3.685143, relative error: 2.872000e-11
numerical: 5.678984 analytic: 5.747740, relative error: 6.017125e-03
在前面的练习我们知道,用向量化的方法进行运算可以让程序快很多,所以接下来我们用向量化方法来计算loss和gradient:
这里我们还是要重点推到一下向量化的梯度 :(用矩阵来计算梯度,常用链式求导+维度分析)
∂
L
∂
W
=
∂
L
∂
S
∂
S
∂
W
=
X
T
∂
L
∂
S
=
X
T
[
.
.
.
∂
L
∂
S
1
.
.
.
.
.
.
∂
L
∂
S
2
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
∂
L
∂
S
N
.
.
.
]
\frac{\partial L}{\partial W} = \frac{\partial L}{\partial S} \frac{\partial S}{\partial W} = X^T\frac{\partial L}{\partial S}=X^T\begin{bmatrix} ...&\frac{\partial L}{\partial S_1}&...\\...&\frac{\partial L}{\partial S_2}&...\\...&...&...\\...&\frac{\partial L}{\partial S_N}&...\end{bmatrix}
∂W∂L=∂S∂L∂W∂S=XT∂S∂L=XT⎣⎢⎢⎡............∂S1∂L∂S2∂L...∂SN∂L............⎦⎥⎥⎤
∂ L ∂ S i = [ ∂ L ∂ S i 1 ∂ L ∂ S i 2 . . . ∂ L ∂ S i C ] \frac{\partial L}{\partial S_i}=\begin{bmatrix} \frac{\partial L}{\partial S_{i1}}&\frac{\partial L}{\partial S_{i2}}&...&\frac{\partial L}{\partial S_{iC}} \end{bmatrix} ∂Si∂L=[∂Si1∂L∂Si2∂L...∂SiC∂L]
因此只要将L依次对
s
i
j
s_{ij}
sij依次求导:
L
i
∂
S
i
j
=
{
0
j
≠
y
i
,
s
j
−
s
y
i
+
Δ
⩽
0
1
j
≠
y
i
,
,
s
j
−
s
y
i
+
Δ
>
0
−
(
n
u
m
(
j
≠
y
i
,
,
s
j
−
s
y
i
+
Δ
>
0
)
−
1
)
\frac{L_i}{\partial S_{ij}} =\left\{ \begin{aligned} 0 & &j\neq y_i,s_j-s_{y_i}+\Delta\leqslant0\\ 1 & &j\neq y_i,,s_j-s_{y_i}+\Delta>0 \\ -(num(j\neq y_i,,s_j-s_{y_i}+\Delta>0)-1) \end{aligned} \right.
∂SijLi=⎩⎪⎨⎪⎧01−(num(j=yi,,sj−syi+Δ>0)−1)j=yi,sj−syi+Δ⩽0j=yi,,sj−syi+Δ>0
def svm_loss_vectorized(W, X, y, reg):
"""
Structured SVM loss function, vectorized implementation.
Inputs and outputs are the same as svm_loss_naive.
"""
loss = 0.0
dW = np.zeros(W.shape) # initialize the gradient as zero
#############################################################################
# TODO: #
# Implement a vectorized version of the structured SVM loss, storing the #
# result in loss. #
#############################################################################
# note delta = 1
print(X)
num = X.shape[0]
y_c = np.dot(X,W)
score_y = y_c[range(num),y].reshape(num,1)
margin = np.maximum(0,y_c-score_y+1)
margin[range(num),y] =0
loss += np.sum(margin)/num
loss += 0.5 * reg * np.sum(W * W)
#############################################################################
# END OF YOUR CODE #
#############################################################################
#############################################################################
# TODO: #
# Implement a vectorized version of the gradient for the structured SVM #
# loss, storing the result in dW. #
# #
# Hint: Instead of computing the gradient from scratch, it may be easier #
# to reuse some of the intermediate values that you used to compute the #
# loss. #
#############################################################################
#first step :
margin[margin > 0] = 1.0
row_sum = np.sum(margin,axis = 1)
margin[np.arange(num), y] = -row_sum
dW += 1.0 / num * np.dot(X.T, margin) + reg * W
#############################################################################
# END OF YOUR CODE #
#############################################################################
return loss, dW
Naive loss and gradient: computed in 0.267549s
Vectorized loss and gradient: computed in 0.002870s
difference: 0.000000
果然速度还是快了很多!(以后都尽量用向量去写代码)
Stochastic Gradient Descent
from __future__ import print_function
import numpy as np
from cs231n.classifiers.linear_svm import *
from cs231n.classifiers.softmax import *
class LinearClassifier(object):
def __init__(self):
self.W = None
def train(self, X, y, learning_rate=1e-3, reg=1e-5, num_iters=100,
batch_size=200, verbose=False):
"""
Train this linear classifier using stochastic gradient descent.
Inputs:
- X: A numpy array of shape (N, D) containing training data; there are N
training samples each of dimension D.
- y: A numpy array of shape (N,) containing training labels; y[i] = c
means that X[i] has label 0 <= c < C for C classes.
- learning_rate: (float) learning rate for optimization.
- reg: (float) regularization strength.
- num_iters: (integer) number of steps to take when optimizing
- batch_size: (integer) number of training examples to use at each step.
- verbose: (boolean) If true, print progress during optimization.
Outputs:
A list containing the value of the loss function at each training iteration.
"""
num_train, dim = X.shape
num_classes = np.max(y) + 1 # assume y takes values 0...K-1 where K is number of classes
if self.W is None: #初始化
# lazily initialize W
self.W = 0.001 * np.random.randn(dim, num_classes)
# Run stochastic gradient descent to optimize W
loss_history = []
for it in range(num_iters):
X_batch = None
y_batch = None
#########################################################################
# TODO: #
# Sample batch_size elements from the training data and their #
# corresponding labels to use in this round of gradient descent. #
# Store the data in X_batch and their corresponding labels in #
# y_batch; after sampling X_batch should have shape (dim, batch_size) #
# and y_batch should have shape (batch_size,) #
# #
# Hint: Use np.random.choice to generate indices. Sampling with #
# replacement is faster than sampling without replacement. #
#########################################################################
batch_inx = np.random.choice(num_train, batch_size) #随机选5个
X_batch = X[batch_inx,:]
y_batch = y[batch_inx]
#########################################################################
# END OF YOUR CODE #
#########################################################################
# evaluate loss and gradient
loss, grad = self.loss(X_batch, y_batch, reg)
loss_history.append(loss)
# perform parameter update
#########################################################################
# TODO: #
# Update the weights using the gradient and the learning rate. #
#########################################################################
self.W += -learning_rate*grad
#########################################################################
# END OF YOUR CODE #
#########################################################################
if verbose and it % 100 == 0:
print('iteration %d / %d: loss %f' % (it, num_iters, loss))
return loss_history
def predict(self, X):
"""
Use the trained weights of this linear classifier to predict labels for
data points.
Inputs:
- X: A numpy array of shape (N, D) containing training data; there are N
training samples each of dimension D.
Returns:
- y_pred: Predicted labels for the data in X. y_pred is a 1-dimensional
array of length N, and each element is an integer giving the predicted
class.
"""
y_pred = np.zeros(X.shape[0])
###########################################################################
# TODO: #
# Implement this method. Store the predicted labels in y_pred. #
###########################################################################
y = np.dot(X,self.W)
y_pred += np.argmax(y,axis=1)
###########################################################################
# END OF YOUR CODE #
###########################################################################
return y_pred
def loss(self, X_batch, y_batch, reg):
"""
Compute the loss function and its derivative.
Subclasses will override this.
Inputs:
- X_batch: A numpy array of shape (N, D) containing a minibatch of N
data points; each point has dimension D.
- y_batch: A numpy array of shape (N,) containing labels for the minibatch.
- reg: (float) regularization strength.
Returns: A tuple containing:
- loss as a single float
- gradient with respect to self.W; an array of the same shape as W
"""
pass
class LinearSVM(LinearClassifier):
""" A subclass that uses the Multiclass SVM loss function """
def loss(self, X_batch, y_batch, reg):
return svm_loss_vectorized(self.W, X_batch, y_batch, reg)
class Softmax(LinearClassifier):
""" A subclass that uses the Softmax + Cross-entropy loss function """
def loss(self, X_batch, y_batch, reg):
return softmax_loss_vectorized(self.W, X_batch, y_batch, reg)
下面这步是用来寻找最优超参数的(算法还是比较简单的,就是找最高的accuracy)
# Use the validation set to tune hyperparameters (regularization strength and
# learning rate). You should experiment with different ranges for the learning
# rates and regularization strengths; if you are careful you should be able to
# get a classification accuracy of about 0.4 on the validation set.
learning_rate = [2e-7,0.75e-7,1.5e-7,1.25e-7,0.75e-7]
regularization_strengths = [3e4,3.25e4,3.5e4,3.75e4,4e4]
# results is dictionary mapping tuples of the form
# (learning_rate, regularization_strength) to tuples of the form
# (training_accuracy, validation_accuracy). The accuracy is simply the fraction
# of data points that are correctly classified.
results = {}
best_val = -1 # The highest validation accuracy that we have seen so far.
best_svm = None # The LinearSVM object that achieved the highest validation rate.
################################################################################
# TODO: #
# Write code that chooses the best hyperparameters by tuning on the validation #
# set. For each combination of hyperparameters, train a linear SVM on the #
# training set, compute its accuracy on the training and validation sets, and #
# store these numbers in the results dictionary. In addition, store the best #
# validation accuracy in best_val and the LinearSVM object that achieves this #
# accuracy in best_svm. #
# #
# Hint: You should use a small value for num_iters as you develop your #
# validation code so that the SVMs don't take much time to train; once you are #
# confident that your validation code works, you should rerun the validation #
# code with a larger value for num_iters. #
################################################################################
for rate in learning_rate:
for regular in regularization_strengths:
svm = LinearSVM()
loss_hist = svm.train(X_train, y_train, learning_rate=rate, reg=regular,num_iters=2000, verbose=True)
y_train_pred = svm.predict(X_train)
y_val_pred = svm.predict(X_val)
accuracy_train = np.mean(y_train == y_train_pred)
accuracy_test = np.mean(y_val == y_val_pred)
if best_val < accuracy:
best_val = accuracy
best_svm = svm
results[(rate,regular)]=(accuracy_train,accuracy_test)
################################################################################
# END OF YOUR CODE #
################################################################################
# Print out results.
for lr, reg in sorted(results):
train_accuracy, val_accuracy = results[(lr, reg)]
print('lr %e reg %e train accuracy: %f val accuracy: %f' % (
lr, reg, train_accuracy, val_accuracy))
print('best validation accuracy achieved during cross-validation: %f' % best_val)
最后这部分代码很有意思,它显示表示了W的实际意义,某块的颜色更深,不同类的W要去寻找图片的模板,比如说horse的W就是去寻找一个类似于马形状的图片,而且左右两边都有头。
# Visualize the learned weights for each class.
# Depending on your choice of learning rate and regularization strength, these may
# or may not be nice to look at.
w = best_svm.W[:-1,:] # strip out the bias
w = w.reshape(32, 32, 3, 10)
w_min, w_max = np.min(w), np.max(w)
classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
for i in range(10):
plt.subplot(2, 5, i + 1)
# Rescale the weights to be between 0 and 255
wimg = 255.0 * (w[:, :, :, i].squeeze() - w_min) / (w_max - w_min)
plt.imshow(wimg.astype('uint8'))
plt.axis('off')
plt.title(classes[i])
第二次作业写了挺久,主要是gradient那里,还重新去看了好几遍书和知乎,最后终于搞懂了,撒花!!!