数字信号处理--几种常见的数字滤波器实现原理

参考:数字信号处理公式变程序(四)—巴特沃斯滤波器(上)

滤波器

现代滤波器理论研究的主要内容是从含有噪声的数据记录中估计出信号的某些特征或者信号本身,估计出的信号的信噪比将比原信号的高,将信号和噪声都视为随机信号,利用其统计特征导出一套最佳的估计算法。
设计的步骤:

  • 给出所需的滤波器的技术指标;
  • 设计一个 H ( z ) H_(z) H(z)使其逼近所需的技术指标;
  • 实现所设计的 H ( z ) H_(z) H(z),其中步骤2是本章和下一章所讨论的主要内容。
    在这里插入图片描述
    按功能分类
    在这里插入图片描述
    按相位响应分为线性相位和非线性相位;按特殊要求分为最小相位滞后滤波器、梳状滤波器等;按冲激响应分为无限冲激响应数字滤波器(IIR:有反馈,无限长),有限冲激响应数字滤波器(FIR:无反馈,有限长)
示例:巴特沃斯滤波器
滤波器设计

**目的:**找到一个满足技术指标要求的可实现的因果稳定的数字滤波器来逼近理想的滤波器幅度特性。

**思路:**间接法-先设计模拟滤波器,然后通过双线性变换法来制作数字低通滤波器、数字高通滤波器、数字带通滤波器、数字带阻滤波器
在这里插入图片描述
模拟滤波器设计:
在这里插入图片描述

通带截止频率wp,阻带截止频率ws, 通带最大衰减1-δ1(Rp(dB)), 阻带最小衰减δ2(As(dB)) 。
在这里插入图片描述

1、确定技术指标: Ω p   o r   s = 2 ∗ π ∗ f p   o r   s \Omega_{p\,or\,s}=2*\pi*f_{p\,or\,s} Ωpors=2πfpors, 1 − δ 1 1-δ1 1δ1, δ 2 δ2 δ2 Ω c ( 3 d B 频 率 ) \Omega_{c}(3dB频率) Ωc3dB Ω c ≥ l g ( 1 0 0.1 A s − 1 1 0 0.1 A p − 1 ) = Ω c p \Omega_{c}\geq lg(\frac{10^{0.1As}-1}{10^{0.1Ap}-1})=\Omega_{cp} Ωclg(100.1Ap1100.1As1)=Ωcp Ω c ≤ l g ( Ω s 1 0 0.1 A s − 1 ) = Ω c s \Omega_{c}\leq lg(\frac{\Omega_{s}}{10^{0.1As}-1})=\Omega_{cs} Ωclg(100.1As1Ωs)=Ωcs
2、计算滤波器所需阶数N,C N = l g ( 1 0 0.1 A s − 1 1 0 0.1 A p − 1 ) / ( 2 ∗ l g ( λ s ) ) N=lg(\frac{10^{0.1As}-1}{10^{0.1Ap}-1})/(2*lg(\lambda_{s})) N=lg(100.1Ap1100.1As1)/(2lg(λs)) C 2 = 1 0 α p / 10 − 1 C^{2}=10^{\alpha_{p}/10}-1 C2=10αp/101
3、查表确定归一化低通滤波器系统函数 G ( p ) G(p) G(p)
G ( p ) = 1 ( p − p 1 ) ( p − p 2 ) ( p − p 3 ) . . . ( p − p N ) G(p)=\frac{1}{(p-p_{1})(p-p_{2})(p-p_{3})...(p-p_{N})} G(p)=(pp1)(pp2)(pp3)...(ppN)1
因为几点成对共轭出现,所以可以按N的奇偶性如下表示:
N 为 偶 G ( p ) = ∏ K = 1 N / 2 G k ( p ) N为偶 G(p)=\prod_{K=1}^{N/2}G_{k}(p) NG(p)=K=1N/2Gk(p) N 为 奇 G ( p ) = 1 p + 1 ∏ K = 1 ( N − 1 ) / 2 G k ( p ) N为奇 G(p)=\frac{1}{p+1}\prod_{K=1}^{(N-1)/2}G_{k}(p) NG(p)=p+11K=1(N1)/2Gk(p)
G k ( p ) = 1 p 2 − 2 p c o s ( 2 k + N − 1 2 N π ) + 1 G_{k}(p)=\frac{1}{p^{2}-2pcos(\frac{2k+N-1}{2N}\pi)+1} Gk(p)=p22pcos(2N2k+N1π)+11 极 点 : p k = e x p ( j 2 k + N − 1 2 N π )    k = 1 , . . N 极点:p_{k}=exp(j\frac{2k+N-1}{2N}\pi)\,\,k=1,..N pk=exp(j2N2k+N1π)k=1,..N
4、将Has(s)转换为所需类型的低通滤波器系统函数G(s),因为 p = s Ω c p=\frac{s}{\Omega_{c}} p=Ωcs,所以
G ( s ) = G ( s Ω c ) G(s)=G(\frac{s}{\Omega_{c}}) G(s)=G(Ωcs)

关于G§还有一种查表计算法:
G ( p ) = 1 ( p − p 1 ) ( p − p 2 ) ( p − p 3 ) . . . ( p − p N ) = 1 1 + a 1 p + a 2 p 2 + . . . + a N p N G(p)=\frac{1}{(p-p_{1})(p-p_{2})(p-p_{3})...(p-p_{N})}=\frac{1}{1+a_{1}p+a_{2}p^{2}+...+a_{N}p^{N}} G(p)=(pp1)(pp2)(pp3)...(ppN)1=1+a1p+a2p2+...+aNpN1
在这里插入图片描述

模拟滤波器数字化
方法有冲激响应不变法、阶跃响应不变法和双线性变换法等。
冲激响应不变法(适合低通和带通);双线性变换法:
s->z

简单说来,将水平面的转移函数映射到z平面,就是数字化,变换公式在思路流程图中。

实际应用滤波的过程就是解常系数线性差分方程的过程。y(n)为滤波后信号,x(n)为滤波前信号
y ( n ) = ∑ m = 0 M b m x ( n − m ) − ∑ k = 1 N a k y ( n − k ) y(n)=\sum^{M}_{m=0}b_{m}x(n-m)-\sum^{N}_{k=1}a_{k}y(n-k) y(n)=m=0Mbmx(nm)k=1Naky(nk)
其中 a k a_{k} ak, b m b_{m} bm分别为系统函数H(z)分母与分子的系统数组

滤波器的素质转模拟技术指标的规则

低通
截止频率 f p f_{p} fp,阻带起始频率 f s f_{s} fs,通带最大衰减 α p α_{p} αp,阻带最小衰减 α s α_{s} αs,由此计算N值 λ p = 1 \lambda_{p}=1 λp=1 λ s = ( f s / f p ) \lambda_{s}=(f_{s}/f_{p}) λs=(fs/fp) p = s Ω p p=\frac{s}{\Omega_{p}} p=Ωps
高通
截止频率 f p f_{p} fp,阻带起始频率 f s f_{s} fs,通带最大衰减 α p α_{p} αp,阻带最小衰减 α s α_{s} αs,由此计算N值 λ p = 1 \lambda_{p}=1 λp=1 λ s = ( f p / f s ) \lambda_{s}=(f_{p}/f_{s}) λs=(fp/fs) p = s Ω p p=\frac{s}{\Omega_{p}} p=Ωps
带通
Ω = ω f \Omega=\omega f Ω=ωf 通带下限截止频率 ω 1 \omega_{1} ω1 通带上限截止频率 ω 3 \omega_{3} ω3 下阻带截止频率 ω z l \omega_{zl} ωzl 上阻带截止频率 ω z h \omega_{zh} ωzh 通频带宽 ω B W = ω 3 − ω 1 \omega_{BW}=\omega_{3}-\omega_{1} ωBW=ω3ω1 定义中心频率 ω 2 2 = ω 1 ω 3 \omega_{2}^{2}=\omega_{1} \omega_{3} ω22=ω1ω3
将频率归一化处理:
η z l = ω z l / ω B W ; η z h = ω z h / ω B W ; η = ω 1 / ω B W ; η = ω 3 / ω B W \eta_{zl}=\omega_{zl}/\omega_{BW};\eta_{zh}=\omega_{zh}/\omega_{BW};\eta=\omega_{1}/\omega_{BW};\eta=\omega_{3}/\omega_{BW} ηzl=ωzl/ωBW;ηzh=ωzh/ωBW;η=ω1/ωBW;η=ω3/ωBW
因为 η 3 − η 1 = 1 = > λ p = 1 \eta_{3}-\eta_{1}=1=>\lambda_{p}=1 η3η1=1=>λp=1
λ s = η z h 2 − η 2 2 η z h \lambda_{s}=\frac{\eta_{zh}^{2}-\eta_{2}^{2}}{\eta_{zh}} λs=ηzhηzh2η22 − λ s = η z l 2 − η 2 2 η z l -\lambda_{s}=\frac{\eta_{zl}^{2}-\eta_{2}^{2}}{\eta_{zl}} λs=ηzlηzl2η22 p = s 2 + Ω 1 Ω 3 s ( Ω 3 − Ω 1 ) p=\frac{s^{2}+\Omega_{1}\Omega_{3}}{s(\Omega_{3}-\Omega_{1})} p=s(Ω3Ω1)s2+Ω1Ω3 最终 λ s \lambda_{s} λs取上绝对值的最小值
带阻
λ s = η z h η z h 2 − η 2 2 \lambda_{s}=\frac{\eta_{zh}}{\eta_{zh}^{2}-\eta_{2}^{2}} λs=ηzh2η22ηzh − λ s = η z l η z l 2 − η 2 2 -\lambda_{s}=\frac{\eta_{zl}}{\eta_{zl}^{2}-\eta_{2}^{2}} λs=ηzl2η22ηzl p = s ( Ω 3 − Ω 1 ) s 2 + Ω 1 Ω 3 p=\frac{s(\Omega_{3}-\Omega_{1})}{s^{2}+\Omega_{1}\Omega_{3}} p=s2+Ω1Ω3s(Ω3Ω1) 最终 λ s \lambda_{s} λs取上绝对值的最小值

G ( p ) G(p) G(p)公式
巴特沃斯(Butterworth)

∣ G ( j Ω ) ∣ 2 = 1 1 + C 2 ( Ω 2 ) N |G(j\Omega)|^{2}=\frac{1}{1+C^{2}(\Omega^{2})^{N}} G(jΩ)2=1+C2(Ω2)N1
G ( p ) = 1 ( p − p 1 ) ( p − p 2 ) . . . ( p − p N ) G(p)=\frac{1}{(p-p_{1})(p-p_{2})...(p-p_{N})} G(p)=(pp1)(pp2)...(ppN)1
C = 1 0 α p / 10 − 1 C=10^{\alpha_{p}/10}-1 C=10αp/101
N = l g ( 1 0 0.1 A s − 1 1 0 0.1 A p − 1 ) / ( 2 ∗ l g ( λ s ) ) N=lg(\frac{10^{0.1As}-1}{10^{0.1Ap}-1})/(2*lg(\lambda_{s})) N=lg(100.1Ap1100.1As1)/(2lg(λs))

切尔雪夫I型(Chebyshev-I)

∣ G ( j Ω ) ∣ 2 = 1 1 + ε 2 C n 2 ( Ω ) |G(j\Omega)|^{2}=\frac{1}{1+\varepsilon^{2}C^{2}_{n}(\Omega)} G(jΩ)2=1+ε2Cn2(Ω)1
G ( p ) = 1 ε × 2 n − 1 ∏ k = 1 n ( p − p k ) G(p)=\frac{1}{\varepsilon \times 2^{n-1}\prod_{k=1}^{n}(p-p_{k})} G(p)=ε×2n1k=1n(ppk)1
ε 2 = 1 0 α p / 10 − 1 \varepsilon^{2}=10^{\alpha_{p}/10}-1 ε2=10αp/101
a 2 = 1 0 0.1 A s − 1 1 0 0.1 A p − 1 a^{2}=\frac{10^{0.1As}-1}{10^{0.1Ap}-1} a2=100.1Ap1100.1As1
N = a r c o s h a a r c o s h λ s N=\frac{arcosha}{arcosh\lambda _{s}} N=arcoshλsarcosha
注: a r c o s h ( x ) = l n ( x + s q r t ( x 2 − 1 ) ) arcosh(x)=ln(x+sqrt(x^2-1)) arcosh(x)=ln(x+sqrt(x21))

切尔雪夫II型(Chebyshev-II)

∣ G ( j Ω ) ∣ 2 = 1 1 + ε 2 [ C n 2 ( Ω s ) C n 2 ( Ω s / Ω ) ] 2 |G(j\Omega)|^{2}=\frac{1}{1+\varepsilon^{2}[\frac{C_{n}^{2}(\Omega_{s})}{C_{n}^{2}(\Omega_{s}/\Omega)}]^{2}} G(jΩ)2=1+ε2[Cn2(Ωs/Ω)Cn2(Ωs)]21

椭圆滤波器

∣ G ( j Ω ) ∣ 2 = 1 1 + ε 2 ⋃ n 2 ( Ω ) |G(j\Omega)|^{2}=\frac{1}{1+\varepsilon^{2}\bigcup_{n}^{2}(\Omega)} G(jΩ)2=1+ε2n2(Ω)1

第l章 数字信号处理引言 1.1 引言 1.2 数字信号处理起源 1.3 信号域 1.4 信号分类 1.5 DSP:一个学科 第2章 采样原理 2.1 引言 2.2 香农采样原理 2.3 信号重构 2.4 香农插值 2.5 采样方法 2.6 多通道采样 2.7 MATLAB音频选项 第3章 混叠 3.1 引言 3.2 混叠 3.3 圆判据 3.4 IF采样 第4章 数据转换和量化 4.1 域的转换 4.2 ADC分类 4.3 ADC增强技术 4.4 DSP数据表示方法 4.5 量化误差 4.6 MAC单元 4.7 MATLAB支持工具 第5章 z变换 5.1 引言 5.2 z变换 5.3 原始信号 5.4 线性系统的z变换 5.5 z变换特性 5.6 MATLAB z变换设计工具 5.7 系统稳定性 5.8 逆z变换 5.9 赫维赛德展开法 5.10 逆z变换MATLAB设计工具 第6章 有限冲激响应滤波器 6.1 引言 6.2 FIR滤波器 6.3 理想低通FIR滤波器 6.4 FIR滤波器设计 6.5 稳定性 6.6 线性相位 6.7 群延迟 6.8 FIR滤波器零点位置 6.9 零相位FIR滤波器 6.10 最小相位滤波器 第7章 窗函数设计法 7.1 有限冲激响应综述 7.2 基于窗函数的FIR滤波器设计 7.3 确定性设计 7.4 数据窗 7.5 基于MATLAB窗函数的FIR滤波器设计 7.6 Kaiser窗函数 7.7 截尾型傅里叶变换设计方法 7.8 频率采样设计法 第8章 最小均方设计方法 8.1 有限冲激响应综述 8.2 最小二乘法 8.3 最小二乘FIR滤波器设计 8.4 MATIAB最小均方设计 8.5 MATLAB设计对比 8.6 PRONY方法 第9章 等波纹设计方法 9.1 等波纹准则 9.2 雷米兹交换算法 9.3 加权等波纹FIR滤波器设计 9.4 希尔伯特等波纹FIR滤波器 9.5 等波纹滤波器阶次估计 9.6 MATLAB等波纹FIR滤波器实现 9.7 LpFIR滤波器设计 9.8 基于Lp范数的MATLAB滤波器设计 第10章 FIR滤波器特例 10.1 引言 10.2 滑动平均FIR滤波器 10.3 梳状FIR滤波器 10.4 L波段FIR滤波器 10.5 镜像FIR滤波器 10.6 补码FIR滤波器 10.7 频率抽样滤波器组 10.8 卷积平滑FIR滤波器 10.9 非线性相位FIR滤波器 10.10 Farrow FIR滤波器 第11章 FIR的实现 11.1 概述 11.2 直接型FIR滤波器 11.3 转置结构 11.4 对称FIR滤波器结构 11.5 格型FIR滤波器结构 11.6 分布式算法 11.7 正则符号数 11.8 简化加法器图 11.9 FIR有限字长效应 11.10 计算误差 11.11 缩放 11.12 多重MAC结构 第12章 经典滤波器设计 12.1 引言 12.2 经典模拟滤波器 12.3 模拟原型滤波器 12.4 巴特沃斯原型滤波器 12.5 切比雪夫原型滤波器 12.6 椭圆原型滤波器 12.7 原型滤波器到最终形式的转换 12.8 其他IIR滤波器形式 12.9 PRONY(PADE)法 12.10 尤尔—沃尔 第13章 无限冲激响应滤波器设计 13.1 引言 13.2 冲激响应不变法 13.3 冲激响应不变滤波器设计 13.4 双线性z变换法 13.5 翘曲 13.6 MATLAB IIR滤波器设计 13.7 冲激响应不变与双线性z变换IIR对比 13.8 最优化 第14章 状态变量滤波器模型 14.1 状态空间系统 14.2 状态变量 14.3 模拟仿真 14.4 MATLAB仿真 14.5 状态变量模型 14.6 基变换 14.7 MATLAB状态空间 14.8 转置系统 14.9 MATLAB状态空间算法结构 第15章 数字滤波器结构 15.1 滤波器结构 15.2 直Ⅰ、Ⅱ型结构 15.3 直Ⅰ、Ⅱ型IIR滤波器的MATLAB相关函数 15.4 直Ⅰ、Ⅱ型结构的MATLAB实现 15.5 级联型结构 15.6 一阶、二阶子滤波器 15.7 一阶、二阶子滤波器的MATLAB实现 15.8 并联型结构 15.9 级联/并联型结构的MATLAB实现 15.10 梯型/格型IIR滤波器 第16章 定点效应 16.1 背景 16.2 定点系统 16.3 溢出(饱和)效应 16.4 算法误差 16.5 系数敏感度 16.6 二阶子滤波器 16.7 标准IIR滤波器 16.8 缩放 16.9 极限环振荡 第17章 IIR结构分析 17.1 溢出防范 17.2 Lp范数界 17.3 L2溢出预防 17.4 L2范数测定 17.5 L2范数的附加说明 17.6 L∞范数界 17.7 L1范数界 17.8 噪声功率增益 17.9 基于状态空间的噪声分析 17.10 相似变换 第18章 多采样率系统简介 18.1 背景 18.2 抽取 18.3 插值 18.4 采样率转换 18.5 多相表示法 18.6 子带滤波器 18.7 MATLAB 第19章 多采样率滤波器 19.1 引言 19.2 离散傅里叶变换(DFI)滤波器组 19.3 L波段滤波器 19.4 正交镜像滤波器 19.5 多相表达式 19.6 掩频滤波器 19.7 级联积分梳状滤波器(CIC) 附录一 MATLAB 附录二 词汇表 附录三 中英文对照 参考文献
11种经典软件滤波的原理和实现 1、限幅滤波法(又称程序判断滤波法) A、方法: 根据经验判断,确定两次采样允许的最大偏差值(设为A) 每次检测到新值时判断: 如果本次值与上次值之差<=A,则本次值有效 如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值 B、优点: 能有效克服因偶然因素引起的脉冲干扰 C、缺点 无法抑制那种周期性的干扰 平滑度差 2、中位值滤波法 A、方法: 连续采样N次(N取奇数) 把N次采样值按大小排列 取中间值为本次有效值 B、优点: 能有效克服因偶然因素引起的波动干扰 对温度、液位的变化缓慢的被测参数有良好的滤波效果 C、缺点: 对流量、速度等快速变化的参数不宜 3、算术平均滤波法 A、方法: 连续取N个采样值进行算术平均运算 N值较大时:信号平滑度较高,但灵敏度较低 N值较小时:信号平滑度较低,但灵敏度较高 N值的选取:一般流量,N=12;压力:N=4 B、优点: 适用于对一般具有随机干扰的信号进行滤波 这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动 C、缺点: 对于测量速度较慢或要求数据计算速度较快的实时控制不适用 比较浪费RAM 4、递推平均滤波法(又称滑动平均滤波法) A、方法: 把连续取N个采样值看成一个队列 队列的长度固定为N 每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则) 把队列中的N个数据进行算术平均运算,就可获得新的滤波结果 N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4 B、优点: 对周期性干扰有良好的抑制作用,平滑度高 适用于高频振荡的系统 C、缺点: 灵敏度低 对偶然出现的脉冲性干扰的抑制作用较差 不易消除由于脉冲干扰所引起的采样值偏差 不适用于脉冲干扰比较严重的场合 比较浪费RAM 5、中位值平均滤波法(又称防脉冲干扰平均滤波法) A、方法: 相当于“中位值滤波法”+“算术平均滤波法” 连续采样N个数据,去掉一个最大值和一个最小值 然后计算N-2个数据的算术平均值 N值的选取:3~14 B、优点: 融合了两种滤波法的优点 对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差 C、缺点: 测量速度较慢,和算术平均滤波法一样 比较浪费RAM 6、限幅平均滤波法 A、方法: 相当于“限幅滤波法”+“递推平均滤波法” 每次采样到的新数据先进行限幅处理, 再送入队列进行递推平均滤波处理 B、优点: 融合了两种滤波法的优点 对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差 C、缺点: 比较浪费RAM 7、一阶滞后滤波法 A、方法: 取a=0~1 本次滤波结果=(1-a)*本次采样值+a*上次滤波结果 B、优点: 对周期性干扰具有良好的抑制作用 适用于波动频率较高的场合 C、缺点: 相位滞后,灵敏度低 滞后程度取决于a值大小 不能消除滤波频率高于采样频率的1/2的干扰信号 8、加权递推平均滤波法 A、方法: 是对递推平均滤波法的改进,即不同时刻的数据加以不同的权 通常是,越接近现时刻的数据,权取得越大。 给予新采样值的权系数越大,则灵敏度越高,但信号平滑度越低 B、优点: 适用于有较大纯滞后时间常数的对象 和采样周期较短的系统 C、缺点: 对于纯滞后时间常数较小,采样周期较长,变化缓慢的信号 不能迅速反应系统当前所受干扰的严重程度,滤波效果差 9、消抖滤波法 A、方法: 设置一个滤波计数器 将每次采样值与当前有效值比较: 如果采样值=当前有效值,则计数器清零 如果采样值<>当前有效值,则计数器+1,并判断计数器是否>=上限N(溢出) 如果计数器溢出,则将本次值替换当前有效值,并清计数器 B、优点: 对于变化缓慢的被测参数有较好的滤波效果, 可避免在临界值附近控制器的反复开/关跳动或显示器上数值抖动 C、缺点: 对于快速变化的参数不宜 如果在计数器溢出的那一次采样到的值恰好是干扰值,则会将干扰值当作有效值导入系统 10、限幅消抖滤波法 A、方法: 相当于“限幅滤波法”+“消抖滤波法” 先限幅,后消抖 B、优点: 继承了“限幅”和“消抖”的优点 改进了“消抖滤波法”中的某些缺陷,避免将干扰值导入系统 C、缺点: 对于快速变化的参数不宜 第11种方法:IIR 数字滤波器
FPGA(Field Programmable Gate Array)是一种可以通过修改硬件电路行为来实现特定功能的可编程逻辑器件。FPGA的数字信号处理实现原理和方法涉及到以下几个方面: 首先,数字信号处理(DSP)是对数字信号的处理和分析,包括数字滤波、信号变换等。FPGA可以实现数字信号处理算法的硬件加速,通过在FPGA中构建并行计算结构,可以提高算法的运行速度和效率。 其次,FPGA的实现方法通常涉及使用硬件描述语言(HDL)编写代码,例如VHDL或Verilog。通过编写HDL代码,可以描述FPGA中的数字电路功能,并通过编译和综合工具将代码转换为FPGA的可编程逻辑。 此外,FPGA的数字信号处理实现也需要选择适当的硬件资源。FPGA包含大量的可编程逻辑单元,内部连接器和存储器等资源,可以通过合理分配和使用这些资源来构建数字信号处理系统。同时,FPGA还可以包含专用的DSP模块,如乘法器、加法器和滤波器等,这些模块可以加速数字信号处理算法的实现。 最后,FPGA的数字信号处理实现还需要考虑数据的输入和输出。FPGA可以连接到外部的信号源和信号接收器,如模数转换器(ADC)和数模转换器(DAC),以实现与外部系统的数据交互。此外,FPGA还可以利用各种I/O接口和通信协议,如Ethernet、USB和PCIe等,与其他设备进行数据传输和通信。 综上所述,FPGA的数字信号处理实现原理和方法主要涉及编写HDL代码描述数字电路功能,合理分配和使用硬件资源,连接外部信号源和信号接收器,并利用各种I/O接口与其他设备进行数据传输和通信。通过这些方法,可以实现高效、灵活和可重构的数字信号处理系统。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值