【高考往期真题】—— 2022高考数学全国 I 卷参考答案

本文作者作为2018届浙江卷考生,分享了自己尝试全国I卷数学试题的心得,包括选择题、填空题和计算题的解答过程,涉及内容涵盖代数构造、立体几何、导函数与奇偶性、圆锥曲线等。通过具体题目解析,展示了解题思路和技巧,适合爱好数学的读者参考学习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写在前面

本人为2018届浙江卷考生,目前大四即将毕业(非数学专业),平时爱好数学,比较关心每年的高考数学卷情况,故斗胆尝试一下全国 I 卷。只挑选了一些压轴题,并且答案并非官方答案,仅供参考,后续也欢迎交流补充。应届考生也请高考结束后再浏览本帖,以免影响后续考试。


选择题 7

在这里插入图片描述
答案:C

解:本题考察代数构造。使用 Taylor 公式在 0 处的展开式(应该是最快的)
在这里插入图片描述
在这里插入图片描述
计算两项后发现, a = 0.1105…,b = 0.1111…,c = 0.095…,故 c < a < b,选 C。


选择题 8

在这里插入图片描述
答案:C

解:本题考察立体几何。选择题一般采用 “先猜后证” 的思想,采用特殊点代入法去求出边界可以节约时间。但这个题需要仔细一点,题目问的是取值范围,所以并不意味着边界值一定是最大的,这里一开始我也踩坑了。。。

在这里插入图片描述
球体积 36Π 可知半径 R = 3,我们以正四棱锥底部正方形对角线为破面画出侧视图,其中 AB 为直径 = 6;AP 为棱长,且 P 是个动点,移动范围为 P 到 Q 的圆周上,AP = 3,AQ = 3√3 (可通过定理《直径所对应的圆周角为90°》计算得出)。显然在 P 点,整个正四棱锥的体积是最小的,此刻可以算出正方形底面边长为 3/2√6(注意 PP’ 是对角线长度而非边长),面积为 27/2,高为 3/2,求出此时体积 S = 1/3 x 27/2 x 3/2 = 27/4。之后同理代入 Q 时的位置可以算出体积为 81/4,但是这是选择题最后一题,肯定是有坑的,当时直觉选了 C,之后计算验证后发现当高为 4 的时候,体积正好为 64/3,而且大于 81/4,故选C。


多选题 12

在这里插入图片描述
答案:未知

解:本题考察导函数与奇偶性。已知 f(3/2-2x) 是偶函数,可以写成 f(-2(x-3/4)) 我们首先可以通过平移变换得到原函数 f(x) 是关于 x = -3/4 轴对称,并且偶函数的导数是奇函数,所以 g(x) 在 x = -3/4 处中心对称。同理,我们还可以得到 g(x) 是关于 x = 2 轴对称的,f(x) 是关于 x = 2 中心对称。


填空题 16

在这里插入图片描述
答案:13

在这里插入图片描述

解:本题考察圆锥曲线。这道题基本上是纯计算,没有什么技巧,唯一的技巧就是要发现 DE 是 AF2 的垂直平分线,从而将 ADE 的周长转移为求解 DE + DF2 + EF2 = 4a(椭圆的性质),从而将本题转化为求 a 的值。

设 DE 为 y = √3/3(x+c),联立椭圆方程,并替换 c = 1/2a,b = √3/2a,最后得到关于 a 的 x 的方程式
13 x 2 + 4 a x − 8 a 2 = 0 13x^2+4ax-8a^2=0 13x2+4ax8a2=0
因此可以得到 D 和 E 的横坐标(假设 x1 在左边)
x 1 = − 4 a − 432 a 2 26 , x 2 = − 4 a + 432 a 2 26 x_1=\frac{-4a-\sqrt{432a^2}}{26}, x_2=\frac{-4a+\sqrt{432a^2}}{26} x1=264a432a2 ,x2=264a+432a2
由于 DE 长度为 6,因此我们知道 x1 和 x2 的横坐标距离为 3√3,因此就有
x 2 − x 1 = 432 a 2 13 = 3 3 x_2-x_1=\frac{\sqrt{432a^2}}{13}=3\sqrt{3} x2x1=13432a2 =33
计算得出 a = 13/4,故 ADE 周长为 4a = 13。


计算题 21

在这里插入图片描述
答案:(1) -1 (2)16/9√3

解:本题考察圆锥曲线,这个压轴题没有什么要注意的地方,只需要仔细确保计算不出错。特别注意,双曲线算出来之后一定要验证一下,不然后面都是徒劳。双曲线为:
x 2 2 − y 2 = 1 \frac{x^2}{2}-y^2=1 2x2y2=1
(1) 问建议设 l 为 y = kx + b,之后与双曲线联立方程组,化简整理得含有 k、b 的 x 的方程式:
( 1 − 2 k 2 ) x 2 − 4 k b x − ( 2 b 2 + 2 ) = 0 (1-2k^2)x^2-4kbx-(2b^2+2)=0 (12k2)x24kbx(2b2+2)=0
通过韦达定理计算出 P 和 Q 的两根和与两根积:
x 1 + x 2 = 4 k b 1 − 2 k 2 x_1+x_2 = \frac{4kb}{1-2k^2} x1+x2=12k24kb
x 1 x 2 = − ( 2 b 2 + 2 ) 1 − 2 k 2 x_1x_2 = \frac{-(2b^2+2)}{1-2k^2} x1x2=12k2(2b2+2)
然后使用题目条件 AP、AQ 斜率之和为 0 列出方程:
y 1 − 1 x 1 − 2 + y 2 − 1 x 2 − 2 = 2 k x 1 x 2 + ( b − 1 − 2 k ) ( x 1 + x 2 ) − 4 b + 4 x 1 x 2 − 2 ( x 1 + x 2 ) + 4 = 0 \frac{y_1-1}{x_1-2}+\frac{y_2-1}{x_2-2}=\frac{2kx_1x_2+(b-1-2k)(x_1+x_2)-4b+4}{x_1x_2-2(x_1+x_2)+4}=0 x12y11+x22y21=x1x22(x1+x2)+42kx1x2+(b12k)(x1+x2)4b+4=0
整理得
2 k 2 + ( b + 1 ) k + ( b − 1 ) = ( k + 1 ) ( 2 k + b − 1 ) = 0 2k^2+(b+1)k+(b-1)=(k+1)(2k+b-1)=0 2k2+(b+1)k+(b1)=(k+1)(2k+b1)=0
要么 k = -1,要么 2k + b - 1 = 0,显然后者是不可能的,因为后者是过点 A 的直线,与题意不符,因此 k = -1。

(2) 问可以采用水平宽 x 铅锤高来计算面积。由于∠PAQ 是由两个相同的角相加得到的,这里我们假设 P 在 Q 左边,因此可以先通过反二倍角公式算出单个角的正切值为 -√2(舍去,0~90° 内的正切值为正)或 √2/2。

假设 P(x1, y1),则有
1 − y 1 2 − x 1 = 2 \frac{1-y_1}{2-x_1}=\sqrt{2} 2x11y1=2
因为 P 在双曲线上,因此与双曲线联立方程即可求出 P 的坐标。整理方程后得到
3 x 1 2 + ( 4 2 − 16 ) x 1 + ( 20 − 8 2 ) = ( x − 2 ) ( 3 x + 4 2 − 10 ) = 0 3x_1^{2}+(4\sqrt{2}-16)x_1+(20-8\sqrt{2})=(x-2)(3x+4\sqrt{2}-10)=0 3x12+(42 16)x1+(2082 )=(x2)(3x+42 10)=0
因此 P横坐标 x1 = (10-4√2)/3,纵坐标 y1 = (4√2-5)/3,因此 b = 5/3。
水平宽 |x1-x2| = √Δ/a = 4/3√8,铅锤高 = 4/3,因此面积
S = 1 2 ∗ 4 8 3 ∗ 4 3 = 16 2 9 S = \frac{1}{2}* \frac{4\sqrt{8}}{3}* \frac{4}{3}= \frac{16\sqrt{2}}{9} S=21348 34=9162


计算题 22

在这里插入图片描述
答案:(1) a = 1 (2)略

解:本题考察导数。这个大轴题比我预想中要简单很多,(1) 问简单求个导就能算出 a = 1,(2) 考察的是一个中心对称的基本结论。求 y 与 f(x) 和 g(x) 的交点可以分成两个部分:f(x) 与 x+b 直线的交点,以及 g(x) 与 x-b 直线的交点(如下图)。可见图中 f(x) 和 g(x) 中心对称,x+b 和 x-b 也是中心对称的,那么必有如下结论:
x 1 + x 4 = x 2 + x 3 x_1+x_4 = x_2+x_3 x1+x4=x2+x3
题中改为等差数列其实就是 x2 与 x3 相等的情况,即求证
x 1 + x 4 = 2 x 2 x_1+x_4 = 2x_2 x1+x4=2x2
那么结论是显然的。

在这里插入图片描述

内容概要:本文深入探讨了AMESim仿真平台在电动汽车(EV)热泵空调系统设计与优化中的应用。首先介绍了AMESim的基础建模方法,如构建制冷循环模型中的压缩机、蒸发器和冷凝器等组件,并详细解释了各部件的工作原理及其参数设定。接着重点阐述了EV热泵空调系统的特殊之处,即不仅能够制冷还可以在冬季提供高效的制热功能,这对于提高电动汽车在寒冷条件下的续航里程和乘坐舒适性非常重要。文中给出了几个具体的案例,包括通过改变压缩机运行频率来进行性能优化,以及针对低温环境下热泵系统的控制策略,如四通阀切换逻辑、电子膨胀阀开度调节等。此外,还讨论了热泵系统与其他子系统(如电池温控)之间的协同工作方式,强调了系统集成的重要性。最后分享了一些实用的经验技巧,例如如何避免仿真过程中可能出现的问题,怎样评估系统的整体性能等。 适合人群:从事汽车工程、暖通空调(HVAC)领域的研究人员和技术人员,特别是关注新能源汽车热管理系统的专业人士。 使用场景及目标:适用于希望深入了解电动汽车热泵空调系统特性的工程师们,旨在帮助他们掌握基于AMESim进行系统建模、仿真分析的方法论,以便更好地指导实际产品研发。 阅读建议:由于涉及到较多的专业术语和技术细节,建议读者具备一定的机械工程背景知识,同时配合官方文档或其他参考资料一起研读,以加深理解。
末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目),个人经导师指导并认可通过的高分设计项目,评审分99分,代码完整确保可以运行,小白也可以亲自搞定,主要针对计算机相关专业的正在做大作业的学生和需要项目实战练习的学习者,可作为毕业设计、课程设计、末大作业,代码资料完整,下载可用。 末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)末作业Python实现基于图神经网络的信任评估项目源代码+使用说明(高分项目)末作
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值