前言
由于工作需要语音识别的功能,环境是在linux arm版上,所以想先在ubuntu上跑起来看一看,就找了一下语音识别的开源框架,选中了vosk这个开源库,但是依赖kaldi,网上对于kaldi介绍的很多,但是没有结合vosk的,这里记录一下。
|版本声明:山河君,未经博主允许,禁止转载
一、开源框架的选取
-
Kaldi
简介: Kaldi 是一个广泛使用的开源语音识别库,支持深度学习,性能非常强大。适用于研究和工业应用。
特点:
提供丰富的语音识别工具集。
支持多种模型格式,包括基于时间延迟神经网络(TDNN)和 LSTM 的模型。
支持多平台,兼容 ARM64,但需要编译和调整。
链接: Kaldi -
Vosk
简介: Vosk 是基于 Kaldi 的语音识别引擎,提供了更简单的 API,并且支持多种语言。Vosk 还适用于资源有限的设备。
特点:
提供流式语音识别。
占用内存较小,适合在 ARM64 平台上使用。
支持多语言模型。
链接: Vosk -
PocketSphinx
简介: 这是 CMU Sphinx 项目的轻量级版本,针对嵌入式系统和移动设备进行了优化。
特点:
适合资源受限的环境,如 ARM64。
提供了基础语音识别功能,支持自定义语言模型。
占用资源少,安装简单。
链接: PocketSphinx -
DeepSpeech
简介: Mozilla 的 DeepSpeech 是一个基于深度学习的语音识别引擎,使用卷积神经网络来提供语音识别能力。
特点:
开源的 STT(语音转文本)引擎,基于百度的 DeepSpeech 研究。
性能较好,但资源消耗相对较高,需要较强的硬件资源。
可以在 ARM64 上编译和运行,但要确保计算能力足够。
链接: DeepSpeech -
Julius
简介: Julius 是一个开源的大词汇量语音识别引擎,主要面向研究用途,但也支持嵌入式设备。
特点:
支持连续语音识别。
占用资源少,适合 ARM64 平台。
提供 C++ 接口,支持定制模型。
链接: Julius
二、kaldi编译
- 安装依赖
sudo apt-get update
sudo apt-get install git make automake autoconf sox libatlas-base-dev gfortran subversion python3
- 下载
git clone https://github.com/kaldi-asr/kaldi.git
cd kaldi
- 编译工具
cd tools
make
- 编译源码