Python中Tqdm模块--进度条配置

Tqdm模块——进度条配置

from time import sleep
from tqdm import tqdm
for i in tqdm(range(1000)):
    sleep(0.01)

在模型训练时的应用

dataloader的使用:for data, target in tqdm(train_loader):

epochs = 10
for epoch in range(epochs):
    # train
    net.train() # net.train() net.eval() 来管理dropout、BN层方法(关闭梯度)
    running_loss = 0.0
    # ------------------------------------------------------------
    train_bar = tqdm(train_loader, file=sys.stdout)
    for step, data in enumerate(train_bar):
        images, labels = data
        optimizer.zero_grad()
        outputs = net(images.to(device))
        loss = loss_function(outputs, labels.to(device))
        loss.backward()
        optimizer.step()
        # ----------------------------------------------------------------------
        # print statistics
        running_loss += loss.item()
        train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1,
                                                                 epochs,
                                                                 loss)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值