Pytorch中的操作是否新结果分配内存的几个问题

本文深入探讨了PyTorch中变量赋值和reshape操作的问题。通过示例解释了直接赋值导致的引用问题,以及reshape操作如何创建指针。提出了解决直接赋值导致id不变的解决方案,并展示了reshape操作后对原始变量的影响。强调在进行深度学习操作时,正确理解和使用这些概念的重要性。
摘要由CSDN通过智能技术生成

自己给自己赋值操作

问题1

before = id(Y)
Y = Y+X
id(Y) = before

输出:False

解决方法

Z = torch.zeros_like(Y)
id_before = id(Z)
Z[:] = X+Y
id_later = id(Z)
id_before = id_later

输出:True

问题2-reshape

a = torch.arange(12)
b = a.reshape((3,4))
b[:] = 2
a

输出:[2,2,2,2,2,2,2,2,2,2,2,2,2,2]
reshape的操作相当于创建了一个指针b

解决方法

b = a.clone()
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值