Deep Learning学习: Pytorch猴痘病识别

一,前言(引用)

>- **🍨 本文为[🔗365天深度学习训练营](https://mp.weixin.qq.com/s/Z9yL_wt7L8aPOr9Lqb1K3w) 中的学习记录博客**
>- **🍖 原作者:[K同学啊](https://mtyjkh.blog.csdn.net/)**

二,训练准备

1.训练环境
  • Framework: Pytorch, matplotlib,numpy
  • Compiler:Jupyter Lab
  • Cpu: AMD Ryzen 5600H
2.数据集

两组数据 ['Monkeypox', 'Others'] 

'Monkeypox' 980张图片

'其他' 1162张图片

import os,PIL,random,pathlib

data_dir = './Woche 4/'
data_dir = pathlib.Path(data_dir)

data_paths = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[1] for path in data_paths]

示例:


三,训练过程

初始化:
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets

import os,PIL,pathlib

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

数据集:

transforms.Compose() 这个类的主要作用是串联多个图片变换的操作。

total_datadir = './Woche 4/'


train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # resize to the same siye
    transforms.ToTensor(),          # turn PIL Image and numpy.ndarray to tensor
    transforms.Normalize(           # Normalize
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  
])

total_data = datasets.ImageFolder(total_datadir,transform=train_transforms)
Dataset ImageFolder
    Number of datapoints: 2142
    Root location: ./Woche 4/
    StandardTransform
Transform: Compose(
               Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=warn)
               ToTensor()
               Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
           )
train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])

torch.utils.data.random_split()方法进行数据集划分。该方法将总体数据total_data按照指定的大小比例([train_size, test_size])随机划分为训练集和测试集,并将划分结果分别赋值给train_dataset和test_dataset两个变量。

划分训练和测试集大小:train_size,test_size = (1713, 429)

torch.utils.data.DataLoader() 允许以小批次的方式迭代你的数据集,这对于训练神经网络和其他机器学习任务非常有用。

  1. dataset(必需参数):这是你的数据集对象,通常是 torch.utils.data.Dataset 的子类,它包含了你的数据样本。
  2. batch_size(可选参数):指定每个小批次中包含的样本数。默认值为 1。
  3. shuffle(可选参数):如果设置为 True,则在每个 epoch 开始时对数据进行洗牌,以随机打乱样本的顺序。这对于训练数据的随机性很重要,以避免模型学习到数据的顺序性。默认值为 False
  4. num_workers(可选参数):用于数据加载的子进程数量。通常,将其设置为大于 0 的值可以加快数据加载速度,特别是当数据集很大时。默认值为 0,表示在主进程中加载数据。
  5. pin_memory(可选参数):如果设置为 True,则数据加载到 GPU 时会将数据存储在 CUDA 的锁页内存中,这可以加速数据传输到 GPU。默认值为 False
  6. drop_last(可选参数):如果设置为 True,则在最后一个小批次可能包含样本数小于 batch_size 时,丢弃该小批次。这在某些情况下很有用,以确保所有小批次具有相同的大小。默认值为 False
  7. timeout(可选参数):如果设置为正整数,它定义了每个子进程在等待数据加载器传递数据时的超时时间(以秒为单位)。这可以用于避免子进程卡住的情况。默认值为 0,表示没有超时限制。
  8. worker_init_fn(可选参数):一个可选的函数,用于初始化每个子进程的状态。这对于设置每个子进程的随机种子或其他初始化操作很有用。
batch_size = 32

train_dl = torch.utils.data.DataLoader(train_dataset,
                                           batch_size=batch_size,
                                           shuffle=True,
                                           num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                          batch_size=batch_size,
                                          shuffle=True,
                                          num_workers=1)
for X, y in test_dl:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break

Shape of X [N, C, H, W]:  torch.Size([32, 3, 224, 224])
Shape of y:  torch.Size([32]) torch.int64

设计CNN训练模型:
import torch.nn.functional as F

class Network_bn(nn.Module):
    def __init__(self):
        super(Network_bn, self).__init__()
        """
        nn.Conv2d()函数:
        第一个参数(in_channels)是输入的channel数量
        第二个参数(out_channels)是输出的channel数量
        第三个参数(kernel_size)是卷积核大小
        第四个参数(stride)是步长,默认为1
        第五个参数(padding)是填充大小,默认为0
        """
        self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)
        self.bn1 = nn.BatchNorm2d(12)
        self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)
        self.bn2 = nn.BatchNorm2d(12)
        self.pool = nn.MaxPool2d(2,2)
        self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)
        self.bn4 = nn.BatchNorm2d(24)
        self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)
        self.bn5 = nn.BatchNorm2d(24)
        self.fc1 = nn.Linear(24*50*50, len(classeNames))

    def forward(self, x):
        x = F.relu(self.bn1(self.conv1(x)))      
        x = F.relu(self.bn2(self.conv2(x)))     
        x = self.pool(x)                        
        x = F.relu(self.bn4(self.conv4(x)))     
        x = F.relu(self.bn5(self.conv5(x)))  
        x = self.pool(x)                        
        x = x.view(-1, 24*50*50)
        x = self.fc1(x)

        return x

device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))

model = Network_bn().to(device)

Network_bn(
  (conv1): Conv2d(3, 12, kernel_size=(5, 5), stride=(1, 1))
  (bn1): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv2): Conv2d(12, 12, kernel_size=(5, 5), stride=(1, 1))
  (bn2): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (conv4): Conv2d(12, 24, kernel_size=(5, 5), stride=(1, 1))
  (bn4): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv5): Conv2d(24, 24, kernel_size=(5, 5), stride=(1, 1))
  (bn5): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (fc1): Linear(in_features=60000, out_features=2, bias=True)
)

训练参数:
loss_fn    = nn.CrossEntropyLoss() 
learn_rate = 1e-4 
opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)
训练循环:
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片
    num_batches = len(dataloader)   # 批次数目,1875(60000/32)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss
  1. pred.argmax(1)pred 是模型的预测输出,通常是一个二维张量,其中每一行表示一个样本的预测结果。argmax(1) 会返回每一行中最大值的索引,即预测的类别。

  2. (pred.argmax(1) == y):将预测的类别与真实标签 y 进行比较,生成一个布尔张量,其中相等的位置为 True,不相等的位置为 False

  3. .type(torch.float):将布尔张量转换为浮点型张量,其中 True 转换为 1.0False 转换为 0.0

  4. .sum().item():计算浮点型张量中所有元素的和,并将结果转换为 Python 标量。这表示预测正确的样本数量。

  5. train_acc += ...:将预测正确的样本数量累加到 train_acc 中,用于计算累计的训练准确率。

测试循环:
def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
    num_batches = len(dataloader)          # 批次数目,313(10000/32=312.5,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss
训练过程:
epochs     = 20
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done'
Epoch: 1, Train_acc:61.2%, Train_loss:0.687, Test_acc:67.8%,Test_loss:0.642
Epoch: 2, Train_acc:68.3%, Train_loss:0.588, Test_acc:69.5%,Test_loss:0.611
Epoch: 3, Train_acc:72.6%, Train_loss:0.542, Test_acc:72.5%,Test_loss:0.567
Epoch: 4, Train_acc:76.8%, Train_loss:0.497, Test_acc:72.0%,Test_loss:0.592
Epoch: 5, Train_acc:78.6%, Train_loss:0.478, Test_acc:76.9%,Test_loss:0.517
Epoch: 6, Train_acc:80.0%, Train_loss:0.449, Test_acc:75.3%,Test_loss:0.513
Epoch: 7, Train_acc:81.7%, Train_loss:0.436, Test_acc:79.5%,Test_loss:0.490
Epoch: 8, Train_acc:83.0%, Train_loss:0.413, Test_acc:75.5%,Test_loss:0.515
Epoch: 9, Train_acc:84.8%, Train_loss:0.396, Test_acc:79.0%,Test_loss:0.471
Epoch:10, Train_acc:85.2%, Train_loss:0.377, Test_acc:80.2%,Test_loss:0.463
Epoch:11, Train_acc:85.7%, Train_loss:0.366, Test_acc:81.6%,Test_loss:0.469
Epoch:12, Train_acc:86.5%, Train_loss:0.353, Test_acc:81.4%,Test_loss:0.453
Epoch:13, Train_acc:86.7%, Train_loss:0.342, Test_acc:80.0%,Test_loss:0.461
Epoch:14, Train_acc:88.0%, Train_loss:0.330, Test_acc:78.1%,Test_loss:0.517
Epoch:15, Train_acc:88.3%, Train_loss:0.328, Test_acc:82.1%,Test_loss:0.431
Epoch:16, Train_acc:89.3%, Train_loss:0.306, Test_acc:83.2%,Test_loss:0.428
Epoch:17, Train_acc:89.7%, Train_loss:0.300, Test_acc:83.7%,Test_loss:0.404
Epoch:18, Train_acc:89.1%, Train_loss:0.301, Test_acc:84.6%,Test_loss:0.398
Epoch:19, Train_acc:91.0%, Train_loss:0.288, Test_acc:83.4%,Test_loss:0.413
Epoch:20, Train_acc:90.8%, Train_loss:0.281, Test_acc:83.7%,Test_loss:0.410
Done
验证结果:
import matplotlib.pyplot as plt

warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

测试环节:
from PIL import Image 

classes = list(total_data.class_to_idx)

def predict_one_image(image_path, model, transform, classes):
    
    test_img = Image.open(image_path).convert('RGB')
    # plt.imshow(test_img)  

    test_img = transform(test_img)
    img = test_img.to(device).unsqueeze(0)
    
    model.eval()
    output = model(img)

    _,pred = torch.max(output,1)
    pred_class = classes[pred]
    print(f'预测结果是:{pred_class}')


predict_one_image(image_path='./Woche 4/Monkeypox/M01_01_05.jpg', 
                  model=model, 
                  transform=train_transforms, 
                  classes=classes)

预测结果是:Others

predict_one_image(image_path='./Woche 4/Monkeypox/M01_01_00.jpg', 
                  model=model, 
                  transform=train_transforms, 
                  classes=classes)

预测结果是:Monkeypox

保存模型

PATH = './model.pth'  
torch.save(model.state_dict(), PATH)

# load paras to model
model.load_state_dict(torch.load(PATH, map_location=device))

<All keys matched successfully>

总结

通过本周的学习,掌握了在训练过程中保存最优模型参数的方法,并能够加载这些参数对本地图片进行识别。重点是调整网络结构,以提高模型在测试集上的表现。通过设置超参数、编写训练和测试函数,理解了如何评估模型效果,并使用可视化工具展示训练中的Loss和Accuracy变化。

在代码方面,本周新增了图片预测和模型保存与加载模块,帮助更好地理解了深度学习中的模型管理与优化过程。尝试了动态调整学习率的方法,并通过实验观察模型准确率的变化。通过这些练习,进一步加深了对深度学习中模型训练、参数调整和结构优化的理解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值