Deep Learning学习: Pytorch实现运动鞋识别

一,前言(引用)

>- **🍨 本文为[🔗365天深度学习训练营](https://mp.weixin.qq.com/s/Z9yL_wt7L8aPOr9Lqb1K3w) 中的学习记录博客**
>- **🍖 原作者:[K同学啊](https://mtyjkh.blog.csdn.net/)**

二,训练准备

1.训练环境
  • Framework: Pytorch, matplotlib,numpy
  • Compiler:Jupyter Lab
  • Cpu: AMD Ryzen 5600H
2.数据集

两组数据Adidas和Nike鞋图片,各有251张作为Training Data, 38张作为Test Data.

三,训练过程

初始化:
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets

import os,PIL,pathlib

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
导入数据:
data_dir = './46-data/'
data_dir = pathlib.Path(data_dir)

data_paths  = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[1] for path in data_paths]

['test', 'train']

  • 使用glob()方法获取data_dir路径下的所有文件路径,并以列表形式存储在data_paths中。
  • 通过split()函数对data_paths中的每个文件路径执行分割操作,获得各个文件所属的类别名称,并存储在classeNames
数据集:
train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    # transforms.RandomHorizontalFlip(), # 随机水平翻转
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

test_transform = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

train_dataset = datasets.ImageFolder("./46-data/train/",transform=train_transforms)
test_dataset  = datasets.ImageFolder("./46-data/test/",transform=train_transforms)

对应关系

train_dataset.class_to_idx  得到{'adidas': 0, 'nike': 1}

transforms.Compose() 这个类的主要作用是串联多个图片变换的操作。Compose — Torchvision 0.19 documentation

batch_size = 32

train_dl = torch.utils.data.DataLoader(train_dataset,
                                           batch_size=batch_size,
                                           shuffle=True,
                                           num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                          batch_size=batch_size,
                                          shuffle=True,
                                          num_workers=1)
  1. dataset(必需参数):这是你的数据集对象,通常是 torch.utils.data.Dataset 的子类,它包含了你的数据样本。
  2. batch_size(可选参数):指定每个小批次中包含的样本数。默认值为 1。
  3. shuffle(可选参数):如果设置为 True,则在每个 epoch 开始时对数据进行洗牌,以随机打乱样本的顺序。这对于训练数据的随机性很重要,以避免模型学习到数据的顺序性。默认值为 False
  4. num_workers(可选参数):用于数据加载的子进程数量。通常,将其设置为大于 0 的值可以加快数据加载速度,特别是当数据集很大时。默认值为 0,表示在主进程中加载数据。

打印

for X, y in test_dl:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break

Shape of X [N, C, H, W]:  torch.Size([32, 3, 224, 224])
Shape of y:  torch.Size([32]) torch.int64

设计CNN训练模型:

class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.conv1 = nn.Sequential(
            nn.Conv2d(3, 12, kernel_size=5, padding=0),  # 12*220*220 输入通道3,输出通道12,卷积核大小5*5,无填充
            nn.BatchNorm2d(12),                         # 批量归一化,用于稳定训练过程
            nn.ReLU())                                  # ReLU 激活函数
        
        self.conv2 = nn.Sequential(
            nn.Conv2d(12, 12, kernel_size=5, padding=0), # 12*216*216 第二层卷积,保持输入和输出通道一致
            nn.BatchNorm2d(12),                         # 批量归一化
            nn.ReLU())
        
        self.pool3 = nn.Sequential(
            nn.MaxPool2d(2))                            # 12*108*108 最大池化,池化核大小为2*2,减少空间维度
        
        self.conv4 = nn.Sequential(
            nn.Conv2d(12, 24, kernel_size=5, padding=0), # 24*104*104 卷积层,输入通道12,输出通道24
            nn.BatchNorm2d(24),                         # 批量归一化
            nn.ReLU())
        
        self.conv5 = nn.Sequential(
            nn.Conv2d(24, 24, kernel_size=5, padding=0), # 24*100*100 卷积层,保持通道不变
            nn.BatchNorm2d(24),                         # 批量归一化
            nn.ReLU())
        
        self.pool6 = nn.Sequential(
            nn.MaxPool2d(2))                            # 24*50*50 最大池化,进一步减少空间维度

        self.dropout = nn.Sequential(
            nn.Dropout(0.2))                            # 随机丢弃20%的神经元,防止过拟合
        
        self.fc = nn.Sequential(
            nn.Linear(24*50*50, len(classeNames)))      # 全连接层,将24*50*50展平为一维,并映射到类别数的输出层
        
    def forward(self, x):
        
        batch_size = x.size(0)                          # 获取输入的batch大小
        x = self.conv1(x)                               # 第一层卷积
        x = self.conv2(x)                               # 第二层卷积
        x = self.pool3(x)                               # 第一次池化
        x = self.conv4(x)                               # 第三层卷积
        x = self.conv5(x)                               # 第四层卷积
        x = self.pool6(x)                               # 第二次池化
        x = self.dropout(x)                             # 随机丢弃
        x = x.view(batch_size, -1)                      # 展平张量,准备输入全连接层 (batch, 24*50*50) ==> (batch, -1)
        x = self.fc(x)                                  # 全连接层输出
       
        return x

device = "cpu"  
print("Using {} device".format(device))

model = Model().to(device)  
Model(
  (conv1): Sequential(
    (0): Conv2d(3, 12, kernel_size=(5, 5), stride=(1, 1))
    (1): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ReLU()
  )
  (conv2): Sequential(
    (0): Conv2d(12, 12, kernel_size=(5, 5), stride=(1, 1))
    (1): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ReLU()
  )
  (pool3): Sequential(
    (0): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (conv4): Sequential(
    (0): Conv2d(12, 24, kernel_size=(5, 5), stride=(1, 1))
    (1): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ReLU()
  )
  (conv5): Sequential(
    (0): Conv2d(24, 24, kernel_size=(5, 5), stride=(1, 1))
    (1): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    (2): ReLU()
  )
  (pool6): Sequential(
    (0): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (dropout): Sequential(
    (0): Dropout(p=0.2, inplace=False)
  )
  (fc): Sequential(
    (0): Linear(in_features=60000, out_features=2, bias=True)
  )
)
训练循环:
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小
    num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss
测试循环:
def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小
    num_batches = len(dataloader)          # 批次数目, (size/batch_size,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss
动态学习率:

学习率调度器简介

  • 在训练深度学习模型时,动态调整学习率可以帮助模型更好地收敛。通常,开始时用较大的学习率进行快速学习,随着训练的进行逐渐降低学习率,以避免错过局部最优解。
  • torch.optim.lr_scheduler 提供了一些工具来帮助动态调整学习率。

使用 LambdaLR 调度器

lambda1 = lambda epoch: (0.92 ** (epoch // 2))
optimizer = torch.optim.SGD(model.parameters(), lr=learn_rate)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1)
  • lambda1 是一个定义学习率调整方式的函数,随训练进行,学习率每 2 个 epoch 按照衰减因子 0.92 递减。
  • torch.optim.SGD() 是定义优化器,用于调整模型参数。这里使用的初始学习率是 learn_rate = 1e-4,即0.0001。
  • LambdaLR 调度器接收 optimizer 以及 lr_lambda 这个学习率衰减函数,用来调整学习率。

工作原理:

  • lambda1 是一个函数,定义为 (0.92 ** (epoch // 2)),表示每 2 个 epoch,学习率按 0.92 的比例衰减。
  • 当模型每训练两个 epoch 后,学习率会被乘以 0.92。例如:
    • 第 0 和 1 个 epoch,学习率不变。
    • 第 2 和 3 个 epoch,学习率变为 0.92 * 初始学习率
    • 第 4 和 5 个 epoch,学习率再乘以 0.92,如此循环递减。

手动调整学习率:

def adjust_learning_rate(optimizer, epoch, start_lr):
    # 每 2 个epoch衰减到原来的 0.92
    lr = start_lr * (0.92 ** (epoch // 2))
    for param_group in optimizer.param_groups:
        param_group['lr'] = lr

该函数通过手动调整学习率的方式实现相同的效果:

  • epoch 代表当前训练的 epoch 数。
  • start_lr 是初始学习率。
  • 该函数每 2 个 epoch 将学习率调整为之前的 92%,通过遍历优化器中的 param_groups,将新的学习率赋值给每个参数组。
训练过程:
loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
epochs     = 40

train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

for epoch in range(epochs):
    # 更新学习率(使用自定义学习率时使用)
    adjust_learning_rate(optimizer, epoch, learn_rate)
    
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
    # scheduler.step() # 更新学习率(调用官方动态学习率接口时使用)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    # 获取当前的学习率
    lr = optimizer.state_dict()['param_groups'][0]['lr']
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, 
                          epoch_test_acc*100, epoch_test_loss, lr))
print('Done')
Epoch: 1, Train_acc:85.9%, Train_loss:0.388, Test_acc:77.6%, Test_loss:0.481, Lr:1.00E-04
Epoch: 2, Train_acc:89.0%, Train_loss:0.369, Test_acc:80.3%, Test_loss:0.436, Lr:1.00E-04
Epoch: 3, Train_acc:90.0%, Train_loss:0.351, Test_acc:80.3%, Test_loss:0.446, Lr:9.20E-05
Epoch: 4, Train_acc:90.4%, Train_loss:0.337, Test_acc:81.6%, Test_loss:0.463, Lr:9.20E-05
Epoch: 5, Train_acc:92.0%, Train_loss:0.323, Test_acc:81.6%, Test_loss:0.474, Lr:8.46E-05
Epoch: 6, Train_acc:91.4%, Train_loss:0.316, Test_acc:80.3%, Test_loss:0.472, Lr:8.46E-05
Epoch: 7, Train_acc:92.2%, Train_loss:0.311, Test_acc:80.3%, Test_loss:0.462, Lr:7.79E-05
Epoch: 8, Train_acc:91.6%, Train_loss:0.309, Test_acc:80.3%, Test_loss:0.450, Lr:7.79E-05
Epoch: 9, Train_acc:94.6%, Train_loss:0.288, Test_acc:82.9%, Test_loss:0.477, Lr:7.16E-05
Epoch:10, Train_acc:93.2%, Train_loss:0.291, Test_acc:80.3%, Test_loss:0.434, Lr:7.16E-05
Epoch:11, Train_acc:94.0%, Train_loss:0.279, Test_acc:80.3%, Test_loss:0.427, Lr:6.59E-05
Epoch:12, Train_acc:95.4%, Train_loss:0.272, Test_acc:82.9%, Test_loss:0.473, Lr:6.59E-05
Epoch:13, Train_acc:95.0%, Train_loss:0.266, Test_acc:80.3%, Test_loss:0.417, Lr:6.06E-05
Epoch:14, Train_acc:95.6%, Train_loss:0.254, Test_acc:80.3%, Test_loss:0.431, Lr:6.06E-05
Epoch:15, Train_acc:96.4%, Train_loss:0.242, Test_acc:80.3%, Test_loss:0.430, Lr:5.58E-05
Epoch:16, Train_acc:95.4%, Train_loss:0.250, Test_acc:81.6%, Test_loss:0.442, Lr:5.58E-05
Epoch:17, Train_acc:96.2%, Train_loss:0.239, Test_acc:82.9%, Test_loss:0.454, Lr:5.13E-05
Epoch:18, Train_acc:96.4%, Train_loss:0.245, Test_acc:80.3%, Test_loss:0.415, Lr:5.13E-05
Epoch:19, Train_acc:95.6%, Train_loss:0.238, Test_acc:80.3%, Test_loss:0.432, Lr:4.72E-05
Epoch:20, Train_acc:96.0%, Train_loss:0.236, Test_acc:80.3%, Test_loss:0.424, Lr:4.72E-05
Epoch:21, Train_acc:96.4%, Train_loss:0.222, Test_acc:81.6%, Test_loss:0.455, Lr:4.34E-05
Epoch:22, Train_acc:96.6%, Train_loss:0.227, Test_acc:80.3%, Test_loss:0.403, Lr:4.34E-05
Epoch:23, Train_acc:96.8%, Train_loss:0.227, Test_acc:81.6%, Test_loss:0.420, Lr:4.00E-05
Epoch:24, Train_acc:97.4%, Train_loss:0.222, Test_acc:81.6%, Test_loss:0.385, Lr:4.00E-05
Epoch:25, Train_acc:97.8%, Train_loss:0.207, Test_acc:81.6%, Test_loss:0.440, Lr:3.68E-05
Epoch:26, Train_acc:96.6%, Train_loss:0.212, Test_acc:81.6%, Test_loss:0.403, Lr:3.68E-05
Epoch:27, Train_acc:97.6%, Train_loss:0.206, Test_acc:81.6%, Test_loss:0.394, Lr:3.38E-05
Epoch:28, Train_acc:96.2%, Train_loss:0.211, Test_acc:81.6%, Test_loss:0.409, Lr:3.38E-05
Epoch:29, Train_acc:97.2%, Train_loss:0.210, Test_acc:81.6%, Test_loss:0.466, Lr:3.11E-05
Epoch:30, Train_acc:97.2%, Train_loss:0.206, Test_acc:81.6%, Test_loss:0.396, Lr:3.11E-05
Epoch:31, Train_acc:97.4%, Train_loss:0.207, Test_acc:81.6%, Test_loss:0.410, Lr:2.86E-05
Epoch:32, Train_acc:97.0%, Train_loss:0.207, Test_acc:81.6%, Test_loss:0.427, Lr:2.86E-05
Epoch:33, Train_acc:97.4%, Train_loss:0.211, Test_acc:81.6%, Test_loss:0.419, Lr:2.63E-05
Epoch:34, Train_acc:96.8%, Train_loss:0.205, Test_acc:81.6%, Test_loss:0.399, Lr:2.63E-05
Epoch:35, Train_acc:98.4%, Train_loss:0.199, Test_acc:84.2%, Test_loss:0.436, Lr:2.42E-05
Epoch:36, Train_acc:97.6%, Train_loss:0.199, Test_acc:81.6%, Test_loss:0.394, Lr:2.42E-05
Epoch:37, Train_acc:97.6%, Train_loss:0.194, Test_acc:82.9%, Test_loss:0.414, Lr:2.23E-05
Epoch:38, Train_acc:97.6%, Train_loss:0.194, Test_acc:82.9%, Test_loss:0.387, Lr:2.23E-05
Epoch:39, Train_acc:97.6%, Train_loss:0.193, Test_acc:81.6%, Test_loss:0.427, Lr:2.05E-05
Epoch:40, Train_acc:97.0%, Train_loss:0.197, Test_acc:81.6%, Test_loss:0.411, Lr:2.05E-05
Done
import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

验证示例:
from PIL import Image 

classes = list(train_dataset.class_to_idx)

def predict_one_image(image_path, model, transform, classes):
    
    test_img = Image.open(image_path).convert('RGB')
    # plt.imshow(test_img)  # 展示预测的图片

    test_img = transform(test_img)
    img = test_img.to(device).unsqueeze(0)
    
    model.eval()
    output = model(img)

    _,pred = torch.max(output,1)
    pred_class = classes[pred]
    print(f'预测结果是:{pred_class}')

# 预测训练集中的某张照片
predict_one_image(image_path='./46-data/test/adidas/1.jpg', 
                  model=model, 
                  transform=train_transforms, 
                  classes=classes)

预测结果是:adidas

总结

本次实验中,掌握了在训练深度学习模型的过程中,如何使用 PyTorch 进行数据处理、模型构建、训练与测试的全流程操作。通过对 Adidas 和 Nike 两个鞋类图像分类任务的实践,理解了卷积神经网络(CNN)的构建方式,及其在图像分类中的作用。

在训练过程中,重点关注了超参数设置和动态学习率调整的效果。通过使用 PyTorch 提供的学习率调度器以及手动调整学习率的策略,探索了不同学习率对模型收敛速度和准确率的影响。在训练和测试阶段,通过绘制 Loss 和 Accuracy 的变化曲线,清晰地展示了模型的收敛趋势。

此外,通过增加图片预测模块,掌握了如何使用训练好的模型对新的图片进行类别预测,并成功实现了模型的保存与加载。这些操作有助于深入理解深度学习中的模型管理与优化技巧。通过实验对比学习率调整的效果,验证了动态学习率对模型最终性能的提升作用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值