三元九运是怎么来的,它的背后是星象的变化规律

导读:三元九运是怎么来的,它的背后是星象的变化规律

换一种方式解释,因为干支是用来计时的,我们可以把黄道十二宫平面想象成钟表的表盘,以地球为表盘中心,十二宫就是表盘的刻度指示,日月五星相当于七个指针,运行在黄道十二宫这个大表盘之上,形成一个巨大的时钟。其中,太阳就是“年”指针,太阳绕地球运行一周回到原点就是一年的时间;月亮就是“月”指针,月亮绕地球运行一周回到原点就是一个月的时间;我们前面讲过二十四节气是跟太阳过宫有直接联系,而和月球运转没有直接关系,所以造成了历法上月令和节气的时间差,因此我们干支学的月令是根据节气而定,即跟日躔过宫相一致。

我们再看两个最慢的指针,即太阳系中两个最重要的行星木星(岁星)和土星(镇星)交会的周期,需要20年,即一个运;如果两星要在同一个宫位上(比如子宫)交会的话,则需要经过60年,即一元。同理,日月五星重合在同一宫位的周期,则需要大致180年左右,即一个正元;如果把日月五星重合的位置再具体化,由夹角30度的一个宫位变为夹角12.8度的一个星宿的宿位,则需要大致540年才能重合一次,即一个大元。

我们现在经常听到了三元九运也是据此而来。三元九运,是中国古人把20年划分为一运,三个20年也就是三运,形成一元。三个元运就是上元、中元、下元,每一元三个运,合称为“三元九运”。上元是一、二、三运;中元是四、五、六运;下元是七、八、九运。每一个元运六十年,三元总共是180年。

在太阳系的九大行星中,土星与木星每隔20年就要相会一次,处于同一直线;每隔60年,土星、木星、水星就要相会一次;每隔180年,九大行星就会处于太阳的同一侧,分布在一个小的扇面中,形成“九星连珠”。因这种天体运行规律永不改变,所以天文学家根据这种规律划定“三元九运”的时间体系,以180年为一正元,每一正元又分上、中、下三元,每元60年,每元分三运,即一至九运。同时,北斗七星加左辅星和右弼星的运行规律与地球上自然现象和人事吉凶之间存在某种暗合关系,在每运20年都有其中一颗星起主导作用。2024年开始,就处于三元九运的离火运,所以会认为属“火”的东西和行业会火起来。九运2024年—2043年(甲辰年至癸亥年),九紫右弼星主事,位于离卦,属火,叫九紫运,也可以称离运。

古代先贤们将北斗九星分别取名为贪狼、巨门、禄存、文曲、廉贞、武曲、破军、左辅、右弼星,并确定了三元九运中每一运的二十年由哪颗星主事,即以二十年作为一运,由北斗九星轮流掌管。以此为基础,通过三元九运与洛书九宫、北斗九星、以及九气间的有机结合,建立和发展了一套“时”与“空”统一的、可以推算阳宅运气和人的吉凶祸福的较为完备的玄空风水理论。这个我们会在后面的风水篇章中会详细讲解。

十二宫即十二地支,所代表的是空间上的十二方位;钟表的表盘代表了宇宙的能量场,即相对静止的天地的气场;日月五星的运行搅动了原本相对静止的能量场,日月五星在十二宫的位置分布,就代表了当前时间内各星对各宫的影响力大小,即当前时间空间内天体能量的分布状态,其表达形式就是甲子、乙丑、丙寅、丁卯等。

上面我们假想的时钟只有年月指针,没有日时指针,这就需要我们把地球自转的因素加以考虑。地球自转周期为一天,即24小时。在地球自转过程中,日月五星对地球同一地点的影响时时在发生着变化,地球上同一地点相对于日月五星运转了一周;地球一天时间内公转角度向前行进约1度,也就是相对于日月五星的空间位置变化为1度,周而复始,日复一日。因此,地球上同一地点的天体能量分布以每天1度的位置而产生变化,即产生了同一地点能量分布逐日逐时变化的结果,这就是日和时的甲子、乙丑、丙寅、丁卯等等。

地支有十二,而天干只有十个,这是因为我们刚才的钟表模型是建立在地心说之上,而实际上我们地球和其余五星都是在围绕太阳公转,由于轨道和运转速度的不同,造成了行星运行之间相对位置的靠近和远离,也就是天文观测中的“行星逆行”,逆行在西方占星学上有着特殊的地位,传统占星师认为逆行使得行星发挥弱势的影响力。但在中国古代阴阳理论的指导下,根据五星相对于地球位置靠近和远离的这两种形式,把五星所代表的能量分为阴和阳,又根据五大行星质量和距离不同,对地球产生影响的能量大小依次排序形成:甲、乙、丙、丁、戊、己、庚、辛、壬、癸十个天干。

天干与地支相配,多出两个地支与天干相配,形成了旬空,也叫空亡。这是由于日月五星和地球都在不停的自转和公转,搅动了原本相对静止的黄道十二宫的能量场,这就造成了地球周围能量分布的不均匀,这就相当于河流中的河水在石块下游,石块背后的地方形成的漩涡,这个漩涡的位置就是空亡。我们在学习八字以及六爻的时候,都提到了空亡。但没有人问根本原因是什么?在这里,大家其实就算是看到根本的原因了。

因为天文学中水星的公转速度最快,公转周期最短,所以河图中说“天一生水”,五行始于水。天干中的壬和癸同属水,是因水星运转产生的能量,根据古人的阴阳理论,阳动阴静,阳先阴后,故取壬水为用,六十甲子中含六个壬,故称为六壬。后来术数中又出了中六壬、小六壬,为了区别,六壬就正式称之大六壬了。

在这里插入图片描述

本文摘自独立学者,作家灵遁者书籍作品《朴易天下》一书。

灵遁者国学三部曲分别为:《相观天下》,《手诊面诊色诊大观园》,《朴易天下》。

### LlamaIndex 多模态 RAG 实现 LlamaIndex 支持多种数据类型的接入与处理,这使得它成为构建多模态检索增强生成(RAG)系统的理想选择[^1]。为了实现这一目标,LlamaIndex 结合了不同种类的数据连接器、索引机制以及强大的查询引擎。 #### 数据连接器支持多样化输入源 对于多模态数据的支持始于数据收集阶段。LlamaIndex 的数据连接器可以从多个异构资源中提取信息,包括但不限于APIs、PDF文档、SQL数据库等。这意味着无论是文本还是多媒体文件中的内容都可以被纳入到后续的分析流程之中。 #### 统一化的中间表示形式 一旦获取到了原始资料之后,下一步就是创建统一而高效的内部表达方式——即所谓的“中间表示”。这种转换不仅简化了下游任务的操作难度,同时也提高了整个系统的性能表现。尤其当面对复杂场景下的混合型数据集时,良好的设计尤为关键。 #### 查询引擎助力跨媒体理解能力 借助于内置的强大搜索引擎组件,用户可以通过自然语言提问的形式轻松获得所需答案;而对于更复杂的交互需求,则提供了专门定制版聊天机器人服务作为补充选项之一。更重要的是,在这里实现了真正的语义级关联匹配逻辑,从而让计算机具备了一定程度上的‘认知’功能去理解和回应人类意图背后所蕴含的意义所在。 #### 应用实例展示 考虑到实际应用场景的需求多样性,下面给出一段Python代码示例来说明如何利用LlamaIndex搭建一个多模态RAG系统: ```python from llama_index import GPTSimpleVectorIndex, SimpleDirectoryReader, LLMPredictor, PromptHelper, ServiceContext from langchain.llms.base import BaseLLM import os def create_multi_modal_rag_system(): documents = SimpleDirectoryReader(input_dir='./data').load_data() llm_predictor = LLMPredictor(llm=BaseLLM()) # 假设已经定义好了具体的大型预训练模型 service_context = ServiceContext.from_defaults( chunk_size_limit=None, prompt_helper=PromptHelper(max_input_size=-1), llm_predictor=llm_predictor ) index = GPTSimpleVectorIndex(documents, service_context=service_context) query_engine = index.as_query_engine(similarity_top_k=2) response = query_engine.query("请描述一下图片里的人物表情特征") print(response) ``` 此段脚本展示了从加载本地目录下各类格式文件开始直到最终完成一次基于相似度排序后的top-k条目返回全过程。值得注意的是,“query”方法接收字符串参数代表使用者想要询问的内容,而在后台则会自动调用相应的解析模块并结合先前准备好的知识库来进行推理计算得出结论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

灵遁者国学智慧

生命在于运动,更在于探索。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值