运筹学_7.博弈论(对策略)

引言

对策论又称博弈论(The Games Theory)是运筹学学科的一个重要分支。具有竞争或对抗性质的行为称为对策行为,对策论就是研究对策行为中,斗争各方是否存在最合理的行动方案,以及如何找到这个合理方案的理论和方法。
近代对于博弈论的研究,开始于策梅洛(Zermelo),波莱尔(Borel)及冯·诺依曼(von Neumann)。
1928年,冯·诺依曼证明了博弈论的基本原理,从而宣告了博弈论的正式诞生。1944年,冯·诺依曼和摩根斯坦共著的划时代巨著《博弈论与经济行为》将二人博弈推广到n人博弈结构并将博弈论系统地应用于经济领域,从而奠定了这一学科的基础和理论体系。
1950~1951年,约翰·福布斯·纳什(John Forbes Nash Jr)利用不动点定理证明了均衡点的存在,为博弈论的一般化奠定了坚实的基础。纳什的开创性论文《n人博弈的均衡点》(1950),《非合作博弈》(1951)等等,给出了纳什均衡的概念和均衡存在定理。此外,莱因哈德·泽尔腾、约翰·海萨尼的研究也对博弈论发展起到推动作用。今天博弈论已发展成一门较完善的学科。

7.1 博弈论(对策论)的基本概念

对策论有三个基本假设

  • 参与人是理性的
  • 他们有这些理性的共同知识
  • 他们知道对策规则

对策论的三个要素

  1. 局中人
    在一个对策行为中,有权决定自己行动方案的对策参加者,称为局中人。
    一般要求一个对策中至少要有二个局中人,如在“齐王赛马”例子中,局中人是齐王与田忌。
    对策中关于局中人的概念是具有广义性的,局中人除了可以理解为个人外,还可以理解为某一集体。
    在对策中总是假定每一个局中人都是理智的。
  2. 策略集
    • 定义:对策中,一个实际可行的行动方案,称为一个策略,所有策略组成的集合称为策略集。一般,每一局中人的策略集中至少应包括两个策略
    • 有限对策和无限对策:如果在一局对策中,各个局中人只有有限的策略,我们称之为有限对策;否则称为无限对策。
    • 局势:在一局对策中,各个局中人选定的策略构成的一个策略组。
  3. 赢得函数
    • 定义:局中人确定了所采取的策略后,会获得相应的收益或损失,收益或损失的值

零和对策

  • 定义:对于一个对策问题,如果在每一个局势中,全体局中人的得失相加都是零,则称此对策为零和对策,否则称为非零和对策。
  • 举例:
    • 下棋:两个人下棋,一方赢得比赛,另一方就输了比赛。胜方的得分和败方的失分加起来正好是零。
    • 扑克游戏:在一局扑克牌游戏中,一个人赢了多少钱,其他人就输了多少钱,所有人的得失相加等于零。

二人有限零和对策

在众多对策模型中,占有重要地位的是二人有限零和对策,即在对策只有两个局中人,各自的策略集只含有限个策略,每局中两个局中人的得失总和为零(即一个局中人的赢得恰为另一个局中人所输掉的值),这类对策又称为矩阵对策

7.2 矩阵对策

矩阵对策数学模型

在这里插入图片描述
在这里插入图片描述

7.3 最优纯策略基本定理和性质

最优纯策略基本定理

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

最优纯策略基本性质

在这里插入图片描述
在这里插入图片描述

7.4 混合策略定义和性质

混合策略的定义

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

混合策略的性质

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

7.5 矩阵对策的基本定理

混合策略基本定理

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

2×2对策公式法

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

7.6 矩阵对策解法

图解法

线性方程组法

线性规划法

7.7 矩阵对策的应用

优超原则

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值