运筹学(重点了解博弈论)

本文详细介绍了运筹学中的博弈论,包括决策人、对抗者、策略、得失、次序等要素,重点阐述了纳什均衡的概念及其在非合作博弈中的重要性。通过实际应用和电影《美丽心灵》中的约翰·纳什,揭示了博弈论在经济学、决策分析和战略决策中的深远影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第一章 线性规划和单纯形法

构建初始单纯性表,逐步迭代求出最优解

 

第二章 对偶和灵敏度分析

求线性规划的对偶问题

灵敏度分析(研究与分析一个系统(或模型)的状态或输出变化对系统参数或周围条件变化的敏感程度的方法)

 

第三章 运输问题

 

第四章 整数规划问题

 

第五章 目标规划问题

 

第六章 图与网络分析

 

动态规划(动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法)

 

决策分析(从若干可能的方案中按一定标准选择其一的决策过程的定量分析方法,,如期望值法或决策树法等主要,应用于大气科学中的动力气象学等学科)

 

决策论(决策论是根据信息和评价准则,用数量方法寻找或选取最优决策方案的科学,是运筹学的一个分支和决策分析的理论基础)

 

对策论(博弈论):

属应用数学的一个分支, 目前在生物学、经济学、国际关系、计算机科学、政治学、军事战略和其他很多学科都有广泛的应用。

博弈论考虑游戏中的个体的预测行为和实际行为,并研究它们的优化策略。

博弈论是二人在平等的对局中各自利用对方的策略变换自己的对抗策略,达到取胜的目的。

 

博弈要素:

      (1)决策人:在博弈中率先作出决策的一方,这一方往往依据自身的感受、经验和表面状态优先采取一种有方向性的行动。  (2) 对抗者:在博弈二人对局中行动滞后的

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值