激活函数(sigmoid、tanh、ReLu)

1️⃣ 激活函数的作用

激活函数为神经网络引入非线性,如果没有激活函数,即使网络层数再多,也只能处理线性可分问题。
在机器学习中,线性可分问题指的是可以通过一条直线(或高维空间的一个超平面)将数据完全分开的问题。现实世界的问题大多数是非线性的,例如自然语言处理中的词汇间的上下文关系,图像识别中复杂的边缘等


2️⃣ sigmoid函数

sigmoid函数将输入变换为(0,1)上的输出。它将范围(-inf,inf)中的任意输入压缩到区间(0,1)中,函数表示为:
s i g m o i d ( x ) = 1 1 + e − x sigmoid(x)=\frac1{1+e^{-x}} sigmoid(x)=1+ex1
在这里插入图片描述
其梯度可以表示为:
d d x s i g m o i d ( x ) = e − x ( 1 + e − x ) 2 = s i g m o i d (

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值