1️⃣ 激活函数的作用
激活函数为神经网络引入非线性
,如果没有激活函数,即使网络层数再多,也只能处理线性可分
问题。
在机器学习中,线性可分问题指的是可以通过一条直线(或高维空间的一个超平面)将数据完全分开的问题。现实世界的问题大多数是非线性的,例如自然语言处理中的词汇间的上下文关系,图像识别中复杂的边缘等
2️⃣ sigmoid函数
sigmoid函数将输入变换为(0,1)
上的输出。它将范围(-inf,inf)中的任意输入压缩到区间(0,1)中,函数表示为:
s i g m o i d ( x ) = 1 1 + e − x sigmoid(x)=\frac1{1+e^{-x}} sigmoid(x)=1+e−x1
其梯度可以表示为:
d d x s i g m o i d ( x ) = e − x ( 1 + e − x ) 2 = s i g m o i d (