第21节:深度学习基础-激活函数比较(ReLU, Sigmoid, Tanh)

1. 引言

在深度学习领域,激活函数是神经网络中至关重要的组成部分

它决定了神经元是否应该被激活以及如何将输入信号转换为输出信号

激活函数为神经网络引入了非线性因素,使其能够学习并执行复杂的任务

没有激活函数,无论神经网络有多少层,都只能表示线性变换,极大地限制了网络的表达能力

本文将深入探讨三种最常用的激活函数:ReLU(Rectified Linear Unit)、Sigmoid和Tanh(双曲正切函数),从数学定义、特性、优缺点到实际应用场景进行全面比较。

2. 激活函数概述

2.1 激活函数的作用

激活函数在神经网络中扮演着多重重要角色:

  1. 引入非线性:使神经网络能够学习和表示复杂的数据模式

  2. 决定神经元输出:基于输入决定神经元是否应该被激活(输出非零值)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点我头像干啥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值