【零基础学习机器学习】机器学习概述

目录

机器学习算法分类

1、sklearn数据集

1、数据集划分

2、sklearn数据集接口介绍

3、sklearn分类数据集

4、sklearn回归数据集(目标值是连续的)

转换器和估计器

转换器

估计器

分类模型的评估

精确率和召回率

其他分类标准

分类模型评估API

模型的选择与调优

1、交叉验证

2、网格搜索

超参数搜索 - 网格搜索API

案例

sklearn模型的保存和加载

from sklearn.externals import joblib

例子:


机器学习算法分类

  • 监督学习(预测)   (特征值+目标值)

分类(目标值离散型):k-近邻算法、贝叶斯分类、决策树与随机森林、逻辑回归、神经网络

回归(目标值连续型):线性回归、岭回归

标注:隐马尔可夫模型(不做要求)

  • 无监督学习 (特征值)

聚类:k-means

1、sklearn数据集

1、数据集划分

机器学习一般的数据集,划分为训练集和测试集。

训练集:用于训练,构建模型

测试集:在模型检验时使用,用于评估模型是否有效

2、sklearn数据集接口介绍

  • sklearn数据集划分API:

sklearn.model_selection.train_test_split

  • sklearn.datasets  加载获取流行数据集

sklearn.datasets.load_*()    获取小规模数据集,数据包含在datasets里

sklearn.datasets.fetch_*(data_home=None)     获取大规模数据集,需要从网络上下载,函数的第一个参数是data_home,表示数据集下载的目录,默认是~/scikit_learn_data/

标签名指的是目标值

3、sklearn分类数据集

  • 数据集分割

例子:

  • 用于分类的大数据集

这是一个新闻数据集

获取新闻数据集的例子:

4、sklearn回归数据集(目标值是连续的

例子:

转换器和估计器

转换器

转换器是在特征工程时用,fit_transform就相当于fit+transform。

fit只把数据输入进去,做一些平均,方差计算,transform只用fit进去的标准来转换数据进行输出。

估计器

估计器是实现了算法的API

分类模型的评估

estimator.score()

一般的估计器都有score方法(算准确率),即预测结果正确的百分比。(预测100个对象,有多少个预测正确)

精确率、召回率

F1-score

精确率和召回率

我们先考虑二分类的问题,比如对猫和狗进行分类的时候,会出现预测结果正确和错误的。

更多的场景是考虑召回率,比如预测癌症的场景中,分析100个癌症患者中被预测为癌症的概率。

其他分类标准

F1-score,反应了模型的稳健性。F1是综合评判标准。

分类模型评估API

sklearn.metrics.classification_report

模型的选择与调优

1、交叉验证

目的:为了让被评估的模型更加准确可信

2、网格搜索

超参数搜索 - 网格搜索API

一般交叉验证和网格搜索一起使用

sklearn.model_selection.GridSearchCV

GridSearch:网格搜索

CV:cross validation 交叉验证

cv一般填10

案例

from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import load_iris, fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import classification_report
import pandas as pd


def knncls_GridSearchCV():
    """
    K-近邻预测用户签到位置
    :return: None
    """
    # TODO 读取数据
    data = pd.read_csv("train.csv")
    # print(data.head(10))

    # TODO 处理数据
    # 1、缩小数据量,为了迅速查询数据
    data = data.query("x>1.0 & x<1.25 & y>2.5 & y<2.75")
    # print(data.head(10))
    # 把日期格式转换成字典格式
    time_value = pd.to_datetime(data['time'], unit='s')
    # print(time_value)
    # print(type(time_value))  # Series
    time_value = pd.DatetimeIndex(time_value)
    # print(time_value)
    # print(type(time_value))  # DatetimeIndex
    # 2、构造一些时间特征
    data['day'] = time_value.day   # 这种形式的增加列,是把time_value的day复制一份,而loc方法是直接拿来用。
    data['hour'] = time_value.hour
    data['weekday'] = time_value.weekday
    # 3、把时间戳特征删除
    data = data.drop(['time'], axis=1)   # Pandas中axis=1表示列
    # print(data)
    # 4、将签到位置少于n个用户的删除
    place_count = data.groupby('place_id').count()    # 分组之后,索引为分组字段,并且列没有分组字段
    tf = place_count[place_count.row_id > 3].reset_index()  # 重设索引,并且列增加索引字段
    data = data[data['place_id'].isin(tf.place_id)]
    # 把row_id列删除,此列无意义
    data = data.drop(['row_id'], axis=1)
    # print(data)
    # 5、取出数据当中的特征值和目标值
    y = data['place_id']
    x = data.drop(['place_id'], axis=1)
    # 6、进行数据的分割,训练集和测试集
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25)  # 训练目标值,测试目标值,训练特征值,测试特征值
    # print(x_train)
    # print(x_test)

    # TODO 特征工程(标准化)
    std = StandardScaler()
    # 对测试集和训练集的特征值进行标准化
    x_train = std.fit_transform(x_train)
    x_test = std.transform(x_test)

    '''
    # TODO 进行算法流程
    knn = KNeighborsClassifier(n_neighbors=3)
    # fit  predict,score
    knn.fit(x_train, y_train)
    # TODO 得出预测结果
    y_predict = knn.predict(x_test)
    print("y预测的目标签到位置为:", y_predict)
    # TODO 得出准确率
    print("预测的准确率:", knn.score(x_test, y_test))
    '''

    knn = KNeighborsClassifier()
    # 构造一些参数的值进行搜索
    param = {"n_neighbors": [3, 5, 10]}
    # TODO 进行网格搜索
    gc = GridSearchCV(knn, param_grid=param, cv=2)
    gc.fit(x_train, y_train)
    # 预测准确性
    print("在测试集上的准确率:", gc.score(x_test, y_test))
    print("在交叉验证当中最好的结果:", gc.best_score_)
    print("选择最好的模型是:", gc.best_estimator_)
    print("每个超参数每次交叉验证的结果:", gc.cv_results_)


    return None


if __name__ == '__main__':

    knncls_GridSearchCV()

结果:

sklearn模型的保存和加载

from sklearn.externals import joblib

例子:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值