【神经网络】—— 验证码识别案例

本文介绍了使用深度学习进行验证码识别的案例,详细讲解了数据处理和模型构建过程。首先,数据包括验证码图片和目标结果csv文件,数据被转化为tfrecords格式。接着,建立全连接层模型,通过softmax和交叉熵计算损失,采用梯度下降优化。求准确性的关键在于正确设置tf.argmax的维度参数。最后,提供了完整的代码实现。
摘要由CSDN通过智能技术生成

验证码识别原理分析

案例数据如下所示:

分为验证码图片数据[20, 80, 3]和目标结果csv文件

 验证码图片数据有很多张,名字例如1.jpg、2.jpg;一份目标结果csv文件,有两列数据,第一列为序列号(从0开始),第二列是目标字母,如NZPP。

数据处理分析步骤:

步骤一:把验证码图片数据和目标csv数据存储成tfrecords文件

步骤二:识别验证码

1、从tfrecords读取,每一张图片有image,label。[100, 20, 80, 3]

2、建立模型,直接读取数据输入到模型中。这里我们就定义一个全连接层。

x=[100, 20*80*3]     w=[20*80*3, 26*4]     bias=[26*4]     y_predict=[100, 26*4]

3、建立损失,softmax,交叉熵

先把[100, 4]的目标值转换成one-hot编码[100, 26*4]

4、梯度下降优化

4个标签(一张图有四个字母)的交叉熵如何建立?

y_true=[None, 4*26]      y_predict=[None, 4*26]

重点注意:

求准确性的时候用到的函数tf.argmax(data值,维度),函数表示求给定数据中的最大值的位置。那么参数中的维度值怎么给定?

在此案例中,求准确性是要用三维计算(一个样本中的四个值都为1,结果才为1),预测值和目标值的范围是[100, 4, 26](三个值对应的维度数是0,1,2),我们肯定是需要求出每个图片的每个字母的准确性,所以是从26个值中找最大值,因此维度值=2。

完整代码

步骤一

把特征数据和目标数据存储成tfrecords文件

#! /usr/bin/env python 
# -*- coding:utf-8 -*-
"""
读取图片验证码源数据和目标csv文件,存储为tfrecords文件
验证码特征数据保存形状[6000,20,80,3]
目标数据保存形状[6000, 4]  例如:[[13,25,15,15], [22,10,7,10], [22,15,18,9],...]
"""
import tensorflow as tf

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'   # 设置告警级别

FLAGS = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string("tfrecords_dir", "./tfrecords/captcha.tfrecords", "验证码图片和标签的TFRecords文件路径")
tf.app.flags.DEFINE_string("captcha_dir", "../data/Genpics/", "验证码图片路径")
tf.app.flags.DEFINE_string("letter", "ABCDEFGHIJKLMNOPQRSTUVWXYZ", "验证码字
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值