作业1:梯度下降法

import numpy as np
import matplotlib.pyplot as plt

x = np.array([[2104, 3], [1600, 3], [2400, 3], [1416, 2],[3000,4]])
t = np.array([400, 330, 365, 232, 540])
a = 0.1
b0 = np.random.random()
b1 = np.random.random()
b2 = np.random.random()
b = np.array([theta1, theta2])

eps = 1e-5
t0 = 999
t1 = 999
t2 = 999
while t0 >= eps or t1 >= eps or t2 >= eps:
    i = 0
    t0 = (np.sum((x[:, i] * b[i])) + b0 * 1 - t[i])
    t1 = t0 * x[1, i]
    t2 = t0 * x[2, i]
    b0 = b0 - a * t0
    b1 = b1 - a * t1
    b2 = b2 - a * t2
    i += 1

print(b0, b1, b2)
11153087938.716803 17844940701444.758 26767411052167.195
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值