机器学习与深度学习思维导图

机器学习思维导图

机器学习的应用范围非常广泛。它涵盖数学,计算机科学和神经科学的多个领域。这是一个试图在一个PDF文件中来总结整个机器学习领域。

Download

PDF 的下载地址:

  • https://github.com/dformoso/machine-learning-mindmap/blob/master/Machine%20Learning.pdf

白色背景下载地址:

  • https://github.com/dformoso/machine-learning-mindmap/blob/master/Machine%20Learning%20-%20White%20BG.pdf

对应的Notebook

这个思维导图或者说是速查表还有一个相对应的Jupyter Notebook,它会教你如何一步一步的进行数据科学

  • https://github.com/dformoso/sklearn-classification

深度学习的思维导图

下载地址:

  • https://github.com/dformoso/deeplearning-mindmap

1. 过程

数据科学处理做不到一劳永逸,而是一个需要设计,实施和维护不断反复的过程。 PDF里面包含有关内容的快速概览。下面是一个快速截图。

2. 数据处理

首先我们需要一些数据。我们找到、收集、清洗以及其它的五个步棸来处理这些数据。下面是一些数据处理要求的例子。

3. 数学运算

数学是建立机器学习的基石。你可以通过这个PDF浏览最常见的组件。 ps:如果你看到缺少的东西可以给作者发送您的反馈,。

4. 概念

一个可能并不十分全面关于激活函数,loss函数,计算框架以及方法的列表

5. 模型

经常使用模型的列表。

引用

我准备在未来建立一个更全面的引用列表。现阶段我只是列出了我建立这个思维导图PDF时的部分来源。

  • Stanford and Oxford Lectures. CS20SI, CS224d.

  • Books:

    • Deep Learning - Goodfellow.

    • Pattern Recognition and Machine Learning - Bishop.

    • The Elements of Statistical Learning - Hastie.

  • Colah's Blog. http://colah.github.io

  • Kaggle Notebooks.

  • Tensorflow Documentation pages.

  • Google Cloud Data Engineer certification materials.

  • Multiple Wikipedia articles.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值