机器学习思维导图
机器学习的应用范围非常广泛。它涵盖数学,计算机科学和神经科学的多个领域。这是一个试图在一个PDF文件中来总结整个机器学习领域。
Download
PDF 的下载地址:
-
https://github.com/dformoso/machine-learning-mindmap/blob/master/Machine%20Learning.pdf
白色背景下载地址:
-
https://github.com/dformoso/machine-learning-mindmap/blob/master/Machine%20Learning%20-%20White%20BG.pdf
对应的Notebook
这个思维导图或者说是速查表还有一个相对应的Jupyter Notebook,它会教你如何一步一步的进行数据科学
-
https://github.com/dformoso/sklearn-classification
深度学习的思维导图
下载地址:
-
https://github.com/dformoso/deeplearning-mindmap
1. 过程
数据科学处理做不到一劳永逸,而是一个需要设计,实施和维护不断反复的过程。 PDF里面包含有关内容的快速概览。下面是一个快速截图。
2. 数据处理
首先我们需要一些数据。我们找到、收集、清洗以及其它的五个步棸来处理这些数据。下面是一些数据处理要求的例子。
3. 数学运算
数学是建立机器学习的基石。你可以通过这个PDF浏览最常见的组件。 ps:如果你看到缺少的东西可以给作者发送您的反馈,。
4. 概念
一个可能并不十分全面关于激活函数,loss函数,计算框架以及方法的列表
5. 模型
经常使用模型的列表。
引用
我准备在未来建立一个更全面的引用列表。现阶段我只是列出了我建立这个思维导图PDF时的部分来源。
-
Stanford and Oxford Lectures. CS20SI, CS224d.
-
Books:
-
Deep Learning - Goodfellow.
-
Pattern Recognition and Machine Learning - Bishop.
-
The Elements of Statistical Learning - Hastie.
-
-
Colah's Blog. http://colah.github.io
-
Kaggle Notebooks.
-
Tensorflow Documentation pages.
-
Google Cloud Data Engineer certification materials.
-
Multiple Wikipedia articles.