正无标记学习(PU learning)

概念

正无标记学习(Positive Unlabeled Learning)是一种机器学习范式,通常用于处理分类问题,其中训练数据中只有一部分样本有标签(正样本),而另一部分样本没有标签(未标记样本)。在正无标记学习中,通常假设未标记样本中包含着大量的负样本,但确切的负样本并不可知。

正无标记学习的目标是通过利用已有的正样本和未标记样本来构建一个能够有效分类的模型。这种学习范式在现实世界中很常见,因为获取标记样本通常比未标记样本昂贵或困难。例如,在医疗诊断中,往往只有少数的病例被确诊,而大多数健康人的数据是容易获得的。

以下是正无标记学习的一些关键概念和方法:

  1. 正样本: 训练数据中已经标记为正类别的样本。

  2. 未标记样本: 训练数据中没有标记的样本,假设其中包含大量负样本。

  3. 建模正类别分布: 正无标记学习的关键挑战之一是如何建模正类别的分布。通常的做法是利用已标记的正样本来估计正类别的分布,然后与未标记样本进行比较。

  4. 负样本估计: 由于未标记样本中可能包含大量负样本,因此正无标记学习中一个重要的步骤是对未标记样本中的负样本进行估计。常见的方法包括使用密度估计、聚类算法等。

  5. 建模与训练: 建模过程通常涉及训练一个分类器来区分正类别和未标记样本。在训练过程中,通常会利用已标记的正样本和估计的负样本来训练分类器。

  6. 主动学习和半监督学习: 正无标记学习与主动学习和半监督学习有关。主动学习通过选择最具信息量的样本来标记,以改善模型的性能。半监督学习则利用有标签和无标签样本来训练模型。

正无标记学习是一个重要的学习范式,可以帮助解决许多现实中有标签样本稀缺的分类问题。通过充分利用未标记样本中的信息,正无标记学习使得模型能够更好地适应现实世界的数据分布,提高分类的

实例

一个具体的实例如下:

假设你是一家医院的数据科学家,负责建立一个模型来检测患者的疾病风险。你有一些患有某种疾病的患者的医疗记录,这些记录被标记为阳性样本。但是,由于医院的隐私政策或其他原因,你无法获取到健康患者的医疗记录作为阴性样本。

在这种情况下,你可以利用正无标记学习来构建一个疾病风险检测模型。

具体步骤如下:

  1. 数据收集: 收集已知患有某种疾病的患者的医疗记录作为阳性样本。

  2. 特征提取: 对医疗记录进行特征提取,可能包括患者的年龄、性别、家族病史、生活方式等信息,以及医学检查结果、生物标志物等。

  3. 建模正类别分布: 使用已知患有某种疾病的患者的医疗记录来建模正类别的分布。可以使用各种机器学习算法,如逻辑回归、支持向量机、神经网络等。

  4. 负样本估计: 对于没有标记的医疗记录(健康患者),使用聚类算法或密度估计等方法来估计其中的负样本(健康患者)。

  5. 建模与训练: 将已知患有某种疾病的患者的医疗记录与估计的健康患者的医疗记录一起作为训练数据,训练一个分类器来区分患病患者和健康患者。

  6. 模型评估与调优: 使用交叉验证等技术对模型进行评估,并根据性能指标(如准确率、召回率、F1 分数等)进行调优。

  7. 应用模型: 将训练好的模型应用于新的患者医疗记录,并根据模型预测的疾病风险为医生提供辅助诊断信息。

  • 8
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
强化学习中的Q-Learning是一种记录行为值的方法,用于解决智能体在与环境交互过程中通过学习策略以达成回报最大化的问题。Q-Learning基于马尔可夫决策过程的假设,通过记录智能体在不同状态下采取不同动作所获得的收益的期望值,即Q值。算法的目标是寻找一个策略,使得智能体能够最大化未来获得的回报。Q-Learning的算法流程主要是通过构建一个Q-table来存储Q值,并根据Q值选择能够获得最大收益的动作。\[2\] 强化学习是一种通过与环境交互获得奖赏指导行为的学习方法。与监督学习不同,强化学习中的强化信号是环境提供的对动作好坏的评价,而不是告诉系统如何产生确的动作。强化学习的目标是使智能体获得最大的奖赏。由于外部环境提供的信息有限,强化学习系统必须通过自身的经验进行学习。通过不断试错的方式,强化学习系统在行动-评价的环境中逐渐获得知识,并改进行动方案以适应环境。\[3\] 总结来说,强化学习是一种通过与环境交互获得奖赏指导行为的学习方法,而Q-Learning是强化学习中的一种主要算法,用于记录行为值并寻找最优策略。 #### 引用[.reference_title] - *1* *3* [强化学习--QLearning](https://blog.csdn.net/wangaolong0427/article/details/124241284)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [【强化学习】 Q-Learning](https://blog.csdn.net/haha0332/article/details/112967024)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值