矩阵基本知识

一、矩阵分类

 
1、行矩阵
只有一行的矩阵,称为行矩阵,又称行向量
A = ( a 1 , a 2 , . . . , a n ) A=(a_1,a_2,...,a_n) A=(a1,a2,...,an)
2、列矩阵
只有一列的矩阵,称为列矩阵,又称列向量
B = { b 1 b 2 . . . b m } B = \begin{Bmatrix} {b_1} \\ {b_2} \\ ... \\ {b_m} \end{Bmatrix} B= b1b2...bm
3、同型矩阵
两个矩阵的行数相等,列数也相等时,就称它们是同型矩阵。它们可以进行矩阵加法和乘法运算
A = [ 1 2 3 4 ] , B = [ 5 6 7 8 ] A= \left[ \begin{matrix} 1 & 2\\ 3 & 4\\ \end{matrix} \right] , B= \left[ \begin{matrix} 5 & 6\\ 7 & 8\\ \end{matrix} \right] A=[1324],B=[5768]
矩阵 A 和 B 都是 2×2 的矩阵,即A和B是同型矩阵,因此可以进行加法和乘法运算
 
4、方阵
行数与列数都等于n的矩阵称为n阶矩阵或n阶方阵,记作 A n A_n An
C = [ 1 2 3 3 4 5 5 7 9 ] C= \left[ \begin{matrix} 1 & 2& 3\\ 3 & 4& 5\\ 5 & 7& 9\\ \end{matrix} \right] C= 135247359
矩阵C是一个3阶矩阵即3阶方阵
 
5、实矩阵
元素都是实数的矩阵,称为实矩阵

6、复矩阵
元素都是复数的矩阵,称为复矩阵

7、零矩阵
元素都是零的矩阵,称为零矩阵

8、对角矩阵
从左上角到右下角的直线(叫做对角线)以外的元素都是0,这种方阵称为对角矩阵,简称对角阵。
A = [ k 1 0 … 0 0 k 2 … 0 ⋮ ⋮ ⋮ ⋮ 0 0 … k n ] A = \left[ \begin{matrix} {k_1} & {0} & \dots & {0}\\ {0} & {k_2} &\dots & {0}\\ \vdots & \vdots & \vdots & \vdots \\ {0} & {0} & \dots & {k_n} \end{matrix} \right] A= k1000k2000kn

9、单位矩阵
方阵对角线上的元素都是1,其他元素都是0,叫 n n n阶单位矩阵,简称单位阵。
E = [ 1 0 … 0 0 1 … 0 ⋮ ⋮ ⋮ ⋮ 0 0 … 1 ] E = \left[ \begin{matrix} {1} & {0} & \dots & {0}\\ {0} & {1} &\dots & {0}\\ \vdots & \vdots & \vdots & \vdots \\ {0} & {0} & \dots & {1} \end{matrix} \right] E= 100010001

二、矩阵的运算

(一)加法运算规律

只有当两个矩阵是同型矩阵,两个矩阵才能进行加法运算。
A 、 B 、 C A、B、C ABC都是 m ∗ n m*n mn矩阵

A + B = B + A A+B = B+A A+B=B+A
( A + B ) + C = A + ( B + C ) (A+B)+C = A+(B+C) A+B+C=A+B+C

− A -A A称为矩阵 A A A的负矩阵。
A + ( − A ) = 0 A+(-A) = 0 A+A=0

④矩阵减法
A − B = A + ( − B ) A-B = A+(-B) AB=A+B

(二)矩阵数乘运算规律

A 、 B A、B AB都是 m ∗ n m*n mn矩阵, λ 、 μ \lambda、\mu λμ为标量

( λ μ ) A = λ ( μ A ) (\lambda\mu)A=\lambda(\mu A) (λμ)A=λ(μA)

( λ + μ ) A = λ A + μ A (\lambda + \mu)A=\lambda A+\mu A (λ+μ)A=λA+μA

λ ( A + B ) = λ A + λ B \lambda(A+B)=\lambda A + \lambda B λ(A+B)=λA+λB

矩阵的加法与矩阵的数乘统称为矩阵的线性运算

(三)矩阵与矩阵相乘

当一个矩阵(左矩阵)的列数等于第二个矩阵(右矩阵)的行数时,两个矩阵才能相乘,其结果为左矩阵的行数与右矩阵的列数。

一般情况下 A ∗ B ≠ B ∗ A A*B \neq B*A AB=BA
对于两个 n n n阶方阵 A 、 B A、B AB,若 A ∗ B = B ∗ A A*B = B*A AB=BA,则称方针 A 与 B A与B AB是可交换的。

注意:
若有两个方阵 A 、 B A、B AB满足 A ∗ B = 0 A*B = 0 AB=0,不能得出 A = 0 , B = 0 A = 0,B = 0 A=0B=0的结论
A ≠ 0 A \neq 0 A=0,而 A ( X − Y ) = 0 A(X-Y)=0 A(XY)=0,也不能得出 X = Y X=Y X=Y的结论

矩阵乘法不满足交换律但满足结合律和分配律
( A B ) C = A ( B C ) (AB)C = A(BC) (AB)C=A(BC)
λ ( A B ) = ( λ A ) B = A ( λ B ) \lambda(AB)=(\lambda A)B = A(\lambda B) λ(AB)=(λA)B=A(λB)
A ( B + C ) = A B + A C A(B+C)=AB+AC A(B+C)=AB+AC;      ( B + C ) A = B A + C A (B+C)A=BA+CA (B+C)A=BA+CA

④单位矩阵E
E A = A E = A EA=AE=A EA=AE=A
( λ E ) A = λ A (\lambda E)A=\lambda A (λE)A=λA
A ( λ E ) = λ A A(\lambda E)=\lambda A A(λE)=λA
 

矩阵的幂

A A A n n n阶方阵
A 1 = A , A 2 = A 1 A 1 , … , A k + 1 = A k A 1 , k 为正整数 A^1=A,A^2=A^1A^1,\dots,A^{k+1}=A^kA^1,k为正整数 A1=A,A2=A1A1,,Ak+1=AkA1,k为正整数
A k A^k Ak就是 k k k A A A连乘,显然只有方阵的幂才有意义。
A k A l = A k + l A^kA^l=A^{k+l} AkAl=Ak+l,      ( A k ) l = A k l (A^k)^l=A^{kl} (Ak)l=Akl

(四)矩阵的转置

把矩阵 A A A的行换成同序数的列,得到一个新矩阵,叫做 A A A的转置矩阵,记作 A T A^T AT

矩阵的转置也是一种运算,满足下述运算规律:
( A T ) T = A (A^T)^T=A (AT)T=A
( A + B ) T = A T + B T (A+B)^T=A^T+B^T (A+B)T=AT+BT
( λ A ) T = λ A T (\lambda A)^T=\lambda A^T (λA)T=λAT
( A B ) T = B T A T (AB)^T=B^TA^T (AB)T=BTAT
 
 
矩阵转置的作用

  1. 简化计算:在进行矩阵乘法运算时,特别是在处理大规模问题时,通过利用转置的性质,可以简化计算过程,例如在矩阵乘法中利用转置减少乘法的次数。
  2. 对称性分析:对于特定的方阵,如果一个矩阵满足其转置等于自身(即A = A^T),则称该矩阵为对称矩阵。对称矩阵在物理学和工程学中有广泛的应用,因为它们代表了某些具有内在对称性的系统。
  3. 变换性质的探究在图像处理或计算机图形学中,矩阵用来描述物体的旋转、缩放和平移等变换。矩阵转置可以帮助我们理解和实现这些变换的逆过程,例如,通过对描述旋转的矩阵进行转置,可以得到逆向旋转的效果。

 
对称矩阵
A A A n n n阶方阵,如果满足 A T = A , 即 A^T=A,即 AT=A,
        a i j = a j i a_{ij}=a_{ji} aij=aji     ( i , j = 1 , 2 , . . . , n ) (i,j=1,2,...,n) (i,j=1,2,...,n)
那么 A A A称为对称矩阵,简称对称阵,对称矩阵的特点是:它的元素以对角线为对称轴对应相等。

(五)方阵的行列式

n n n阶方阵 A A A的元素构成的行列式(各元素的位置不变),称为方阵 A A A的行列式,记作 d e t A 或 ∣ A ∣ detA或|A| detAA

方阵与行列式的区别
方阵: n n n阶方阵是 n 2 n^2 n2个数按一定方式排成的数表
n n n阶行列式:是这些数(也就是数表 A A A)按一定的运算法则所确定的一个数

行列式运算规律:
A 、 B A、B AB n n n阶方阵, λ \lambda λ为实数
∣ A T ∣ = ∣ A ∣ |A^T|=|A| AT=A
∣ λ A ∣ = λ n ∣ A ∣ |\lambda A|=\lambda^n|A| λA=λnA
∣ A B ∣ = ∣ A ∣ ∣ B ∣ |AB|=|A||B| AB=A∣∣B

 
伴随矩阵
行列式 ∣ A ∣ |A| A的各个元素的代数余子式 A i j A_{ij} Aij所构成的如下的矩阵

A ∗ = { A 11 A 21 ⋯ A n 1 A 12 A 22 ⋯ A n 2 ⋮ ⋮ ⋮ A 1 n A 2 n ⋯ A n n } A^* = \begin{Bmatrix} {A_{11} } & {A_{21} } & \cdots & {A_{n1}}\\ {A_{12}} & {A_{22}} & \cdots &{A_{n2}} \\ \vdots & \vdots & &\vdots \\ {A_{1n}} & {A_{2n} } & \cdots & {A_{nn}} \end{Bmatrix} A= A11A12A1nA21A22A2nAn1An2Ann

称为 A A A的伴随矩阵,简称伴随阵
A A ∗ = A ∗ A = ∣ A ∣ E AA^*=A*A=|A|E AA=AA=AE

 
 
行列式的计算

行列式性质:

  1. 如果方阵的行或列向量线性相关,则其行列式为0。
  2. 行列式的绝对值可以衡量矩阵的“尺度”或“体积”
  3. 对于可逆矩阵,其行列式非零。

方阵的行列式在求解线性方程组、计算矩阵的逆、以及多变量微积分等领域有重要应用。行列式的值可以反映一个线性变换的某些特性,如伸缩因子等。

行列式的计算方法有多种,包括:

  • 拉普拉斯展开
  • 三角化(高斯消元法)
  • 对角线法则(萨鲁斯法则)

简单行列式计算:
1.二阶方阵
对于一个二阶方阵 A = [ a b c d ] A= \left[ \begin{matrix} a & b\\ c & d\\ \end{matrix} \right] A=[acbd]
其行列式计算公式为
d e t ( A ) = a d − b c det(A)=ad-bc det(A)=adbc

2.三阶方阵
对于一个三阶方阵
A = [ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ] A= \left[ \begin{matrix} a_{11} & a_{12}& a_{13}\\ a_{21} & a_{22}& a_{23}\\ a_{31} & a_{32}& a_{33}\\ \end{matrix} \right] A= a11a21a31a12a22a32a13a23a33
其行列式可以通过萨鲁斯法则(Sarrus’ rule)计算
d e t ( A ) = a 11 ( a 22 a 33 − a 23 a 32 ) − a 12 ( a 21 a 33 − a 23 a 31 ) + a 13 ( a 21 a 32 − a 22 a 31 ) det(A)=a_{11}(a_{22}a_{33}-a_{23}a_{32})-a_{12}(a_{21}a_{33}-a_{23}a_{31})+a_{13}(a_{21}a_{32}-a_{22}a_{31}) det(A)=a11(a22a33a23a32)a12(a21a33a23a31)+a13(a21a32a22a31)

3.高阶方阵
对于更高阶的方阵,计算行列式通常使用如下方法:

a.拉普拉斯展开
      行列式可以通过拉普拉斯展开来计算,即对于方阵 A = [ a i j ] n ∗ n , A=[a_{ij}]n*n, A=[aij]nn其行列式可以表示为:
      d e t ( A ) = ∑ j = 1 n ( − 1 ) i + j a i j . d e t ( A i j ) det(A)=\sum_{j=1}^n(-1)^{i+j}a_{ij}.det(A_{ij}) det(A)=j=1n(1)i+jaij.det(Aij)
      其中, A i j A_{ij} Aij是去掉第 i i i行和第 j j j列后剩余的 ( n − 1 ) ∗ ( n − 1 ) (n-1)*(n-1) (n1)(n1)阶子方阵的行列式。

b.高斯消元法
     将方阵通过行变换化为上三角形或下三角形,然后计算对角线上元素的乘积。因为行列式的值在行变换下不变,所以这种方法可以简化计算。

c.特征值
     对于某些特定的矩阵,还可以通过计算特征值来求解行列式。如果 A A A的所有 n n n 个特征值
      λ 1 , λ 2 , . . . , λ n \lambda 1,\lambda 2,...,\lambda n λ1,λ2,...,λn已知,则 A A A的行列式为这些特征值的乘积:
      d e t ( A ) = λ 1 ∗ λ 2 ∗ . . . ∗ λ n det(A)=\lambda 1 *\lambda 2*...*\lambda n det(A)=λ1λ2...λn

三、逆矩阵

对于 n n n阶矩阵 A A A,如果有一个 n n n阶矩阵 B B B,使得
A B = B A = E AB=BA=E AB=BA=E
则说明矩阵 A A A是可逆的,并把矩阵 B B B称为 A A A的逆矩阵,简称逆阵。
如果矩阵 A A A是可逆的,那么 A A A的逆矩阵是唯一的
A A A的逆矩阵记作 A − 1 A^{-1} A1,即若 A B = B A = E AB=BA=E AB=BA=E,则 B = A − 1 B=A^{-1} B=A1

①若矩阵 A A A可逆,则 ∣ A ∣ ≠ 0 |A|\neq0 A=0
②若 ∣ A ∣ ≠ 0 |A|\neq0 A=0,则矩阵 A A A可逆,且 A − 1 = 1 ∣ A ∣ A ∗ A^{-1}=\frac{1}{|A|} A^* A1=A1A,      其中 A ∗ A^* A A A A的伴随矩阵

 
矩阵可逆的条件
∣ A ∣ = 0 |A|=0 A=0时, A A A称为奇异矩阵,否则称为非奇异矩阵。
A A A是可逆矩阵的充分必要条件是 ∣ A ∣ ≠ 0 |A|\neq0 A=0,即可逆矩阵就是非奇异矩阵
A B = E 或 B A = E AB=E或BA=E AB=EBA=E,则 B = A − 1 B=A^{-1} B=A1

 
逆矩阵的运算规律
①若 A A A可逆,则 A − 1 A^{-1} A1亦可逆,且 ( A − 1 ) − 1 = A (A^{-1})^{-1}=A (A1)1=A
②若 A A A可逆,数 λ ≠ 0 \lambda\neq0 λ=0,则 λ A \lambda A λA亦可逆,且 ( λ A ) − 1 = 1 λ A − 1 (\lambda A)^{-1}=\frac{1}{\lambda} A^{-1} (λA)1=λ1A1
③若 A 、 B A、B AB为同阶矩阵且均可逆,则 A B AB AB亦可逆,且 ( A B ) − 1 = B − 1 A − 1 (AB)^{-1}=B^{-1}A^{-1} (AB)1=B1A1
④若 A A A可逆,则 A T A^{T} AT亦可逆,且 ( A T ) − 1 = ( A − 1 ) T (A^{T})^{-1}=(A^{-1})^T (AT)1=(A1)T

四、矩阵的特征值

矩阵的特征值是一个标量,它描述了矩阵作用于特定非零向量时,该向量方向上的拉伸或压缩因子。具体来说,特征值有以下几个关键点:

  • 定义:特征值是指对于一个 n n n阶方阵 A A A,如果存在一个非零向量 X X X和一个实数 λ \lambda λ,满足 A A A乘以 X X X等于 λ \lambda λ乘以 X X X,(即 A X = λ X AX=\lambda X AX=λX),那么 λ \lambda λ就成为矩阵 A A A的一个特征值。
  • 物理意义:特征值反映了在特定的方向上,矩阵所代表的线性变换的效果。如果某个方向上的向量在变换后仅仅改变了长度(可能是伸长或缩短),而方向保持不变,那么这个长度的变化比例就是特征值。
  • 特征向量:与特征值对应的非零向量x被称为特征向量。特征向量和特征值是成对出现的,特征向量指示了在空间中哪些方向上会发生这样的纯伸缩变换。
  • 计算方法:特征值通常是通过求解特征方程得到的,特征方程可以表示为 ∣ A − λ I ∣ = 0 |A-\lambda I|=0 AλI=0,其中 I I I是单位矩阵, ∣ ∣ || ∣∣表示行列式。解这个方程可以得到矩阵A的所有特征值。
  • 应用:特征值在多个领域都有广泛的应用,例如在信号处理中用于分析系统的稳定性,在图像处理中用于图像识别和分类,以及在机器学习中用于数据的降维等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值