【线性代数】第2章:矩阵(大学期末考试必看)

目录

一、基本概念

1.矩阵定义

2.同型矩阵

3.特殊矩阵

二、矩阵运算

1.前提条件

2.基本运算

3.转置矩阵

4.方阵行列式

5.伴随矩阵

三、初等矩阵

1.初等变换

2.初等矩阵

四、矩阵求逆

1.逆矩阵定义

2.矩阵可逆条件

3.可逆矩阵性质

4.矩阵求逆方法

五、矩阵的秩

1.相关概念

2.矩阵秩的性质

3.两个重要定理

4.矩阵求秩方法

六、分块矩阵

1.定义

2.方式

3.运算

4.分块对角阵

4.1定义

4.2性质


(原创文章,转载请注明出处)

一、基本概念

1.矩阵定义

由m×n个数按一定的顺序排列成的m行n列的矩形数表,称为m×n矩阵

2.同型矩阵

矩阵A和矩阵B的行数和列数均相等,则称矩阵A与B为同型矩阵

3.特殊矩阵

零矩阵(元素全为0,记作:O)、三角矩阵、对角矩阵(主对角线以外元素全部为0,记作:\mathrm{\Lambda}=diag\left(\lambda_1,\lambda_2,\ldots\lambda_n\right)、单位矩阵(主对角线均为1的对角矩阵,记作:EI)、数量矩阵(主对角线均为a的对角矩阵)、梯形矩阵、转置矩阵(行列互换得到的矩阵,记作A^T)、对称矩阵、反对称矩阵、分块矩阵

二、矩阵运算

1.前提条件

  • 完全相同的两个矩阵才相等;只有同型矩阵才能做加减运算
  • 前面的矩阵列数等于后面矩阵行数的两个矩阵相乘才有意义

2.基本运算

  • 加减:同型矩阵对应元素相加减
  • 乘法:前面的矩阵第一行乘以后面的矩阵第一列,对应元素乘积之和作为第一行第一列的元素,前面的矩阵第一行乘以后面的矩阵第二列,对应元素乘积之和作为第一行第二列的元素,以此类推……(简单记作:前行乘后列)
  • 数乘: 用数去乘矩阵中每个元素(而行列式只乘其中一行(列)元素)

3.转置矩阵

  • 定义:原矩阵行列互换位置得到转置矩阵,记作:A^T
  • 性质:①\left(A^T\right)^T=A\left(A+B\right)^T=A^T+B^T\left(kA\right)^T=kA^T\left(AB\right)^T=B^TA^T

4.方阵行列式

  • 定义:设用n阶矩阵A的所有元素(保持各元素位置不变)构成的行列式,称为方阵A的行列式,记为|A|或detA
  • 性质:①\left|A^T\right|=\left|A\right|   ②\left|kA\right|=k^n\left|A\right|   ③\left|AB\right|=\left|A\right|\left|B\right|

5.伴随矩阵

  • 定义:给定n阶方阵A:A=\left[\begin{matrix}\begin{matrix}\begin{matrix}a_{11}\\a_{21}\\\end{matrix}&\begin{matrix}a_{12}\\a_{11}\\\end{matrix}\\\end{matrix}&\begin{matrix}\begin{matrix}\cdots\\\cdots\\\end{matrix}&\begin{matrix}a_{1n}\\a_{2n}\\\end{matrix}\\\end{matrix}\\\begin{matrix}\begin{matrix}\vdots\\a_{n1}\\\end{matrix}&\begin{matrix}\vdots\\a_{n2}\\\end{matrix}\\\end{matrix}&\begin{matrix}\begin{matrix}\ddots\\\cdots\\\end{matrix}&\begin{matrix}\vdots\\a_{nn}\\\end{matrix}\\\end{matrix}\\\end{matrix}\right],其各个元素的代数余子式按以下方式排列构成n阶方阵:A^\ast=\left[\begin{matrix}\begin{matrix}\begin{matrix}A_{11}\\A_{12}\\\end{matrix}&\begin{matrix}A_{21}\\A_{22}\\\end{matrix}\\\end{matrix}&\begin{matrix}\begin{matrix}\cdots\\\cdots\\\end{matrix}&\begin{matrix}A_{n1}\\A_{n2}\\\end{matrix}\\\end{matrix}\\\begin{matrix}\begin{matrix}\vdots\\A_{1n}\\\end{matrix}&\begin{matrix}\vdots\\A_{2n}\\\end{matrix}\\\end{matrix}&\begin{matrix}\begin{matrix}\ddots\\\cdots\\\end{matrix}&\begin{matrix}\vdots\\A_{nn}\\\end{matrix}\\\end{matrix}\\\end{matrix}\right],称A^\astA的伴随矩阵
  • 注意:求得A的各个元素的代数余子式之后行列互换位置得伴随矩阵
  • 结论:
    ① AA^\ast=A^\ast A=\left|A\right|E(A为n阶方阵)
    \left|A^\ast\right|=\left|A\right|^{n-1}(伴随矩阵行列式的值)

三、初等矩阵

1.初等变换

  • 3种初等变换:①对调两行(列)②数乘(0除外)③某一行(列)某一行的k倍加到另一行(列)
  • 矩阵等价定义:矩阵A经过有限次初等变换得到矩阵B,则称A与B等价,记作:A\cong\ B
  • 矩阵等价性质:①反身性 ②对称性 ③传递性
  • 定理
    ①矩阵A总可以经过若干次初等行变换化为行梯形矩阵或最简形矩阵
    ②矩阵A总可以经过若干次初等变换化为标准形:F=\left(\begin{matrix}E_r&O\\O&O\\\end{matrix}\right)_{m\times n}
    (其中r行梯形矩阵中非零行的行数)

2.初等矩阵

  • 定义:对单位矩阵E作一次初等变换后得到的矩阵为初等矩阵
  • 定理:设A是m×n矩阵,对A施行一次初等行变换,相当于在A的左边乘以相应的m阶初等矩阵;对A施行一次初等列变换,相当于在A的右边乘以相应的n阶初等矩阵

四、矩阵求逆

1.逆矩阵定义

对于n 阶方阵A,如果存在n阶方阵B,使得AB=BA=E,则称方阵A是可逆的,并称方阵B为A的逆矩阵

2.矩阵可逆条件

方阵A可逆的充要条件是:\left|A\right|\neq0

3.可逆矩阵性质

  • \left(A^{-1}\right)^{-1}=A
  • \left(A^T\right)^{-1}=\left(A^{-1}\right)^T
  • \left(kA\right)^{-1}=\frac{1}{k}A^{-1}\ \left(k\neq0\right)
  • \left(AB\right)^{-1}=B^{-1}A^{-1}
  • 矩阵A可逆,矩阵B,C满足:AB=ACBA=BC,则B=C

4.矩阵求逆方法

  • 待定系数法:设逆矩阵的未知数,通过相乘与单位矩阵对应元素相等建立方程组,求取未知数
  • 初等变换法:\left(A\middle|\ E\right)\overset{line}{\rightarrow}\left(E\middle|\ A^{-1}\right) 或 \left(\frac{A}{E}\right)\overset{Column}{\rightarrow}\left(\frac{E}{A^{-1}}\right)
  • 伴随矩阵法:A^{-1}=\frac{A^\ast}{\left|A\right|}(主要针对n 阶方阵A)
    (推导:逆矩阵定义:AA^{-1}=A^{-1}A=E …① 伴随矩阵结论:AA^\ast=A^\ast A=\left|A\right|E…②,联立①②可得:A^{-1}=\frac{A^\ast}{\left|A\right|}

五、矩阵的秩

1.相关概念

  • K阶子式:在m×n矩阵A中任取k行k列,位于这些行、列相交处的k^{2}个元素,按原次序组成的k阶行列式,称为矩阵A的k阶子式
    (注意:矩阵的子式本质是行列式;矩阵A_{m\times n}共有C_m^kC_n^k个 k 阶子式)
  • 矩阵的秩:(规定:零矩阵的秩为零)m×n矩阵A中不为零的子式的最高阶数称为矩阵A的秩,记作:r\left(A\right)=r

2.矩阵秩的性质

        前提:设A为m×n矩阵

  • 0\le\ r\left(A\right)\le{min}\left\{m,n\right\}r\left(A^T\right)=r\left(A\right)
  • m=n时,即对于n阶方阵A,其行列式为\left|A\right|,有以下结论
    \left|A\right|\neq0r\left(A\right)=n;当\left|A\right|=0r\left(A\right)<n
    (故称:可逆矩阵称为满秩矩阵,不可逆矩阵称为降秩矩阵)

3.两个重要定理

  • 定理一:若r\left(A\right)=r,则:r阶子式不为零,r+1阶子式全为零
  • 定理二:若矩阵A与B等价,则:r\left(A\right)=r\left(B\right)

4.矩阵求秩方法

  • 初等变换法:将矩阵进行初等变换得到阶梯型矩阵,阶梯型矩阵的秩等于其非零行的行数
  • K阶子式法:通过取矩阵的K阶子式(阶数从小到大)并计算K阶子式是否为零

六、分块矩阵

1.定义

将矩阵用若干纵横直线分成若干个小块,每一个小块称为矩阵的子块(或子阵),以子块为元素形成的矩阵称为分块矩阵(即分块矩阵的元素也是矩阵)

2.方式

普通分块(行列划分)、按行分块(仅行化分)、按列分块(仅列化分)

3.运算

加减运算、数乘运算、乘法运算、转置运算(类似矩阵运算)

4.分块对角阵

4.1定义

设A为n阶方阵,其分块矩阵只有对角线上有非零子块,其余子块皆为零矩阵块,即:A=\left[\begin{matrix}\begin{matrix}\begin{matrix}A_1\\O\\\end{matrix}&\begin{matrix}O\\A_2\\\end{matrix}\\\end{matrix}&\begin{matrix}\begin{matrix}\cdots\\\cdots\\\end{matrix}&\begin{matrix}O\\O\\\end{matrix}\\\end{matrix}\\\begin{matrix}\begin{matrix}\vdots\\O\\\end{matrix}&\begin{matrix}\vdots\\O\\\end{matrix}\\\end{matrix}&\begin{matrix}\begin{matrix}\ddots\\\cdots\\\end{matrix}&\begin{matrix}\vdots\\A_r\\\end{matrix}\\\end{matrix}\\\end{matrix}\right]

4.2性质

  • 基本性质:加减(主对角线元素相加)、数乘(主对角线元素与数相乘)、乘法(主对角线元素相乘)
  • A^m=\left[\begin{matrix}A_1^m&\ &\begin{matrix}\ &\ \\\end{matrix}\\\ &A_2^m&\begin{matrix}\ &\ \\\end{matrix}\\\begin{matrix}\ \\\ \\\end{matrix}&\begin{matrix}\ \\\ \\\end{matrix}&\begin{matrix}\begin{matrix}\ddots\\\ \\\end{matrix}&\begin{matrix}\ \\A_r^m\\\end{matrix}\\\end{matrix}\\\end{matrix}\right](m为正整数)
  • A^T=\left[\begin{matrix}A_1^T&\ &\begin{matrix}\ &\ \\\end{matrix}\\\ &A_2^T&\begin{matrix}\ &\ \\\end{matrix}\\\begin{matrix}\ \\\ \\\end{matrix}&\begin{matrix}\ \\\ \\\end{matrix}&\begin{matrix}\begin{matrix}\ddots\\\ \\\end{matrix}&\begin{matrix}\ \\A_r^T\\\end{matrix}\\\end{matrix}\\\end{matrix}\right]
  • A^{-1}=\left[\begin{matrix}A_1^{-1}&\ &\begin{matrix}\ &\ \\\end{matrix}\\\ &A_2^{-1}&\begin{matrix}\ &\ \\\end{matrix}\\\begin{matrix}\ \\\ \\\end{matrix}&\begin{matrix}\ \\\ \\\end{matrix}&\begin{matrix}\begin{matrix}\ddots\\\ \\\end{matrix}&\begin{matrix}\ \\A_r^{-1}\\\end{matrix}\\\end{matrix}\\\end{matrix}\right]\left|A_i\right|\neq0,且矩阵A可逆)
  • \left|A\right|=\left|A_1\right|\left|A_2\right|\cdots\left|A_r\right|
  • r\left(A\right)=r\left(A_1\right)+r\left(A_2\right)+\cdots+r\left(A_r\right)

若有不妥之处,恳请读者批评指正

  • 29
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值