BZOJ3684 大朋友与多叉树【拉格朗日反演+多项式快速幂】

传送门


SOL

设多叉树的OGF 为 G G G,有 G = ∑ k ∈ D G k + x G=\sum_{k\in D}G^{k}+x G=kDGk+x,变形后得 G − ∑ k ∈ D G k = x G-\sum_{k\in D}G^{k}=x GkDGk=x

令 F ( x ) = x − ∑ k ∈ D x k , 有 F ( G ( x ) ) = x 令 F(x)=x-\sum_{k\in D}x^k,有F(G(x))=x F(x)=xkDxkF(G(x))=x嗯呐,嗅到了拉格朗日反演的气息。

下面使用我们辛苦背诵的拉格朗日繁衍反演公式:
[ x n ] f ( x ) = 1 n [ x − 1 ] 1 g n ( x ) [x^n]f(x)={1\over n}[x^{-1}]{1\over g^n(x)} [xn]f(x)=n1[x1]gn(x)1
变形: [ x n ] f ( x ) = 1 n [ x n − 1 ] 1 G n ( x ) [x^n]f(x)={1\over n}[x^{n-1}]{1\over G^n(x)} [xn]f(x)=n1[xn1]Gn(x)1其中 G ( x ) = g ( x ) x G(x)={g(x)\over x} G(x)=xg(x)


补充1:
多项式快速幂:
A n = e x p ( n ∗ l n A ) A^n=exp(n*lnA) An=exp(nlnA)


补充2:
求原根:
对于质数模数 P P P,对 P − 1 P-1 P1分解质因数: P − 1 = p 1 a 1 p 2 a 2 . . . p n a n P-1=p_1^{a_1}p_2^{a_2}...p_n^{a_n} P1=p1a1p2a2...pnan,在 1 − P 4 1-\sqrt[4]{P} 14P 的所有数中,只需要满足 g P − 1 p i ≠ 1 g^{P-1\over p_i}\neq1 gpiP1̸=1 g g g即为原根。
本题原根为 7 7 7
//为什么要补充呢?我才不会告诉你我求错了原根呢 ?


CODE

#include<bits/stdc++.h>
#define ri register int
#define rint register int  
using namespace std;
const int rlen=1<<18|5;
inline char gc(){
	static char buf[rlen],*ib,*ob;
	(ib==ob)&&(ob=(ib=buf)+fread(buf,1,rlen,stdin));
	return ib==ob?-1:*ib++;
}
inline int read(){
	int ans=0;
	char ch=gc();
	while(!isdigit(ch))ch=gc();
	while(isdigit(ch))ans=((ans<<2)+ans<<1)+(ch^48),ch=gc();
	return ans;
}
const int mod=950009857,N=1e5+5;
typedef long long ll;
typedef vector<int> poly;
inline int add(int a,int b){return (a+=b)>=mod?a-=mod:a;}
inline int dec(int a,int b){return a<b?a-b+mod:a-b;}
inline int mul(int a,int b){return 1ll*a*b%mod;}
inline void Add(int&a,int b){(a+=b)>=mod?a-=mod:a;}
inline void Dec(int&a,int b){a=a<b?a-b+mod:a-b;}
inline void Mul(int&a,int b){a=1ll*a*b%mod;}
inline int ksm(int a,int p){int ret=1;for(;p;p>>=1,a=mul(a,a))if(p&1)Mul(ret,a);return ret;}
int lim,tim,w[23],invv[23];
vector<int>rev[23];
inline void init_w(){
	w[20]=ksm(7,(mod-1)>>21),invv[0]=1;
	for(ri i=19;~i;--i)w[i]=mul(w[i+1],w[i+1]);
	for(ri i=1,mt=mod+1>>1;i<23;++i)invv[i]=mul(invv[i-1],mt);
}
inline void init(const int&up){
	lim=1,tim=0;
	while(lim<up)lim<<=1,++tim;
	if(rev[tim].size())return;
	rev[tim].resize(lim);
	for(ri i=0;i<lim;++i)rev[tim][i]=(rev[tim][i>>1]>>1)|((i&1)<<(tim-1));
}
inline void ntt(poly&a,int type){
	for(ri i=0;i<lim;++i)if(i<rev[tim][i])swap(a[i],a[rev[tim][i]]);
	for(ri i=1,t=0,a0,a1;i<lim;i<<=1,++t)for(ri j=0,len=i<<1;j<lim;j+=len)
	for(ri k=0,mt=1;k<i;++k,Mul(mt,w[t]))a0=a[j+k],a1=mul(a[j+k+i],mt),a[j+k]=add(a0,a1),a[j+k+i]=dec(a0,a1);
	if(~type)return;
	reverse(++a.begin(),a.end());
	for(ri i=0;i<lim;++i)Mul(a[i],invv[tim]);
}
inline poly operator*(poly a,poly b){
	int n=a.size(),m=b.size(),t=n+m-1;
	if(t<=128){
		poly c(t);
		for(ri i=0;i<n;++i)for(ri j=0;j<m;++j)Add(c[i+j],mul(a[i],b[j]));
		return c;
	}
	init(t);
	a.resize(lim),ntt(a,1);
	b.resize(lim),ntt(b,1);
	for(ri i=0;i<lim;++i)Mul(a[i],b[i]);
	return ntt(a,-1),a.resize(t),a;
}
inline poly poly_inv(poly a,int k){
	poly c,b(1,ksm(a[0],mod-2));
	for(ri i=4,up=k<<2;i<up;i<<=1){
		init(i);
		c=a,c.resize(i>>1);
		c.resize(lim),ntt(c,1);
		b.resize(lim),ntt(b,1);
		for(ri i=0;i<lim;++i)Mul(b[i],dec(2,mul(b[i],c[i])));
		ntt(b,-1),b.resize(i>>1);
	}
	return b.resize(k),b;
}
inline poly deriv(poly a){
	for(ri i=0,up=a.size()-1;i<up;++i)a[i]=mul(a[i+1],i+1);
	return a.pop_back(),a;
}
int inv[N<<2];
inline poly integ(poly a){
	a.push_back(0);
	for(ri i=a.size()-1;i;--i)a[i]=mul(a[i-1],inv[i]);
	return a[0]=0,a;
}
inline poly poly_ln(poly a,int k){return a=integ(deriv(a)*poly_inv(a,k)),a.resize(k),a;}
inline poly poly_exp(poly a,int k){
	poly b(1,1),c;
	a.resize(k<<1);
	for(ri i=2,up=k<<1;i<up;i<<=1){
		c=poly_ln(b,i);
		for(ri j=0;j<i;++j)c[j]=dec(a[j],c[j]);
		Add(c[0],1);
		b=b*c,b.resize(i);
	}
	return b.resize(k),b;
}
int S,n,m;
signed main(){
	#define sf scanf
//	freopen("data.in","r",stdin);
	sf("%d%d",&S,&n);
	init_w();
	inv[1]=1;
	for(rint i=2,up=S<<1;i<=up;++i)inv[i]=mul(inv[mod-mod/i*i],mod-mod/i);
	m=1;while(m<=S)m<<=1;
	poly a(m);
	while(n--){
		int num;sf("%d",&num);--num;
		a[num]=mod-1;
	}
	++a[0];
//	for(int i=0;i<m;++i)cout<<a[i]<<'\n';
	a=poly_ln(a,m);
//	for(int i=0;i<S;++i)cout<<a[i]<<'\n';
	for(rint i=0;i<m;++i)a[i]=mul(a[i],S);
	a=poly_exp(a,m);
	a=poly_inv(a,m);
	cout<<mul(a[S-1],inv[S]);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值