「从零入门推荐系统」06:推荐系统召回算法介绍

作者 | gongyouliu

编辑 | gongyouliu

我们在前面几章中介绍了推荐系统的一些基本概念,从本章开始我们会进入推荐系统的核心章节,也就是关于推荐算法部分的介绍。我们在第五章「推荐系统业务流程与架构」中讲到推荐系统一般会分为召回和排序两个阶段,召回可以看成是推荐前的初筛过程,排序是对初筛的结果进行精细打分排序的过程。

召回和排序两个阶段中使用的算法就是推荐系统的核心算法。在后面一系列文章中,我们会先花几章介绍召回算法,然后再介绍排序算法。本章我们先简单介绍常用的召回算法及其特性,希望读者对召回算法有一个初步的了解。

6.1 什么是召回算法

一般在工业级推荐系统中,涉及到的推荐候选集是非常大的,比如淘宝上就有上亿的商品。召回其实就是一个初筛的过程,先通过简单的算法和策略将推荐候选集的规模限制在一个比较小的集合(一般几百到几千个),然后再用精准的排序算法对候选集进行精细排序。这么做的目的是将推荐过程拆解为两个先后依赖的步骤,这样做的价值一是将问题解耦,二是降低问题的复杂度,可以更好地工程实现。

基于召回算法的初筛目的,召回算法一般可以用比较简单的算法来实现,这样可以快速在大规模候选集中将待推荐的物品筛选出来,简单的召回算法在工程实现和效率上都是更好的选择。

另外,为了不至于错失用户可能真正喜欢的物品(如果召回阶段没有被筛选出来,那么这个物品就不会推荐给用户了),一般会用多种召回算法,每个算法可以从不同的维度来将用户喜欢的物品筛选出来。选择多个召回算法的思路有点类似集成学习,通过多路召回起到“三个臭皮匠,顶个诸葛亮”的作用。

现在大家应该对什么是召回算法及召回的目的了解了,那么下面我们介绍一些常用的召回算法,让大家知道我们可以从哪些维度进行召回。

6.2 常用的召回算法介绍

召回算法种类非常多,可以是简单的规则策略,也可以是复杂的算法。召回算法可以从数据维度来划分,可以基于用户画像的召回、基于用户行为的召回等。召回算法还可以从是否是个性化的算法来划分。下面我们从3个维度来分别介绍常用的召回算法,方便读者可以更好地理解各种召回算法之间的区别和联系。

6.2.1 基于算法复杂度的分类

如果按照算法复杂度来划分,我们可以将召回算法分为基于规则策略的召回、基于简单算法的召回、基于复杂算法的召回这3类,下面分别介绍。

6.2.1.1 基于规则策略的召回

这类召回算法是基于具体的业务场景和产品运营策略来制定的。比如可以基于热门进行召回(如各类排行榜),比如可以基于重点运营类目进行召回等(一般是运营人员来确定),比如可以基于不同的性别或者地域由运营人员整理一批候选集,针对用户的性别或者地域来进行召回。

其他的规则策略召回方法有很多,比如可以基于新品进行召回,也就是将最近新上架的商品作为一个召回池子。也可以基于最近的运营计划来召回,比如阿里在双十一期间会对某些商品进行促销打折,那么这类商品也可以构建成一个召回池。

基于规则策略的召回一般跟行业、策略、业务相关,不同的行业在不同时期有不同的做法,这需要算法工程师跟业务部门进行很好的配合,算法工程师在实施这类召回策略时一定要理解具体的业务场景和业务价值。

6.2.1.2 基于简单算法的召回

这类召回算法利用比较简单有效的算法进行召回,这类算法一般实现比较简单,容易理解,只要有相关的数据基础就可以实施,也是在真实业务场景中用得比较多的算法。下面举几个例子来说明。

对于推荐系统来说,每个用户都有历史行为(这里不考虑冷启动用户),那么就可以利用

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数据与智能

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值