Ultra Fast车道线检测复现

前言

项目需要,做了一小段时间的车道线检测,复现了《Ultra Fast Structure-aware Deep Lane Detection》论文中的开源工程,记录到这篇博文中!

【车道线】Ultra Fast复现

原理简述

在这篇论文中把车道线检测转看作行分类任务:首先设置一系列anchor,这些anchor代表y坐标值(先验信息),再由模型判断每个y值的哪一行属于车道线,获得x坐标值;最终由一些列的点(x,y)构成一条完整的车道线。更详细的论文解读可以参考原作者的博文Link

模型训练复现

模型重训练按照作者提供的gayhub地址的参考操作流程非常快就能开启你自己的炼丹之路。
原作者定义的网络模型高达200+M,对于车道线检测任务来说这个模型太过庞大,因此需要对网络结构进行魔改,参考博文Link可以非常快速的了解这个工程,并设计专属的网络结构。
除此之外,还有非常重要的一环没有没有看到其他人做过,就是生成这个工程所需要的标签文件(以CULane数据为例):这个工程的标签文件就是与原图分辨率一致的图像,如下图所示:
原图:
在这里插入图片描述
标签图:由于像素值设置太小(第0条车道线对应像素值为1、第1条车道线对应像素值为2),因此肉眼无法看出
在这里插入图片描述
标签可视化:
在这里插入图片描述
还有一个需要注意的点,本车道的左右两条车道线永远对应2和3标签
CULane数据标签制作源码,设置好root路径并提前建好文件夹即可

import os
import cv2
import numpy as np

root = "Y:/data/CULane"

def draw(LabelPath, Idx):
    LabelImg = np.zeros((590, 1640), dtype=np.int8)
    if Idx == [0, 0, 0, 0]:
        return LabelImg
    else:
        id = 0
        color = 0
        with open(LabelPath, 'r') as f:
            Pst = f.readlines()
            for i in range(len(Pst)):
                Lane = Pst[i].strip("\n").split(" ")
                # print(Lane)
                l = []
                for j in range(0, len(Lane) - 1, 2):
                    px = float(Lane[j])
                    py = float(Lane[j+1])
                    if py < 0.:
                        continue
                    else:
                        l.append([int(px), int(py)])
                l = np.array(l)
                for k in range(id, len(Idx)):
                    if Idx[k] != 0:
                        color = Idx[k]
                        break
                    else:
                        continue

                LabelImg = cv2.polylines(LabelImg, [l], False, color, 16)
                id = color
        return LabelImg


with open(root + "/list/train_gt.txt", "r") as f:
    trainlist = f.readlines()
    for i in range(len(trainlist)):
        print(i)
        Idx = [0, 0, 0, 0]
        ImgPath = root + trainlist[i].split(" ")[0]
        LableName = trainlist[i].split(" ")[0].split("/")[-1].split(".")[0] + ".lines.txt"
        LabelPath = root + trainlist[i].split(" ")[0][0:-9] + LableName
        # print(ImgPath)
        # print(LabelPath)

        if trainlist[i].split(" ")[2] == '1':
            Idx[0] = 1
        else:
            Idx[0] = 0

        if trainlist[i].split(" ")[3] == '1':
            Idx[1] = 2
        else:
            Idx[1] = 0

        if trainlist[i].split(" ")[4] == '1':
            Idx[2] = 3
        else:
            Idx[2] = 0

        if trainlist[i].split(" ")[5].strip('\n') == '1':
            Idx[3] = 4
        else:
            Idx[3] = 0

        LabelImg = draw(LabelPath, Idx)
        cv2.imwrite(root + "/laneseg_label_w16" + trainlist[i].split(" ")[0][0:-4] + ".png", LabelImg)

        print(root + "/laneseg_label_w16" + trainlist[i].split(" ")[0][0:-4] + ".png")
        # print("*********************")


onnx模型导出源码

import torch
import torch.onnx
from model.model import parsingNet
from torchsummary import summary

# model = torch.load("./log/all_model.pth", map_location=torch.device('cpu'))
#
# with torch.no_grad():
#     model.eval()
#     summary(model, (3,288,800))
														# 65,18,4仅针对我自己模型
net = parsingNet(pretrained=False, backbone="18", cls_dim=(65, 18, 4), use_aux=False).cpu()

state_dict = torch.load("./out/1103/UFAST_CULane_1103.pth", map_location='cpu')['model']
compatible_state_dict = {}
for k, v in state_dict.items():
    if 'module.' in k:
        compatible_state_dict[k[7:]] = v
    else:
        compatible_state_dict[k] = v
net.load_state_dict(state_dict)    # 加载模型
net.eval()

dummy_input = torch.randn(1, 3, 288, 800, device='cpu')

torch.onnx.export(net, dummy_input, "./out/1103/UFAST_1103.onnx", verbose=True, input_names=["input"], output_names=["output"])

下篇文章会详细介绍如何基于ncnn使用该模型,OVER!

评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值