01. 图像增广

视频:36 数据增广【动手学深度学习v2】

书籍:13.1. 图像增广 — 动手学深度学习 2.0.0-beta0 documentation (d2l.ai)

PPT:part-2_5.pdf (d2l.ai)

代码:image-augmentation slides (d2l.ai)

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-gB1dWNOC-1651055907138)(E:\Typora_Picture\01. 图像增广.assets\image-20220426124828204.png)]

3种常用方式

翻转、切割、颜色

在这里插入图片描述

在这里插入图片描述

其他图像增强方法

aleju/imgaug: Image augmentation for machine learning experiments. (github.com)

在这里插入图片描述

具体是用什么方法要根据测试集来决定

总结

  • 数据增广通过变形数据来获取多样性从而使得模型泛化性能更好。
  • 常见图片增广包括翻转、切割、变色

代码

图像增广

🏷sec_image_augmentation

在 :numref:sec_alexnet中,我们提到过大型数据集是成功应用深度神经网络的先决条件。 图像增广在对训练图像进行一系列的随机变化之后,生成相似但不同的训练样本,从而扩大了训练集的规模。 此外,应用图像增广的原因是,随机改变训练样本可以减少模型对某些属性的依赖,从而提高模型的泛化能力。 例如,我们可以以不同的方式裁剪图像,使感兴趣的对象出现在不同的位置,减少模型对于对象出现位置的依赖。 我们还可以调整亮度、颜色等因素来降低模型对颜色的敏感度。 可以说,图像增广技术对于AlexNet的成功是必不可少的。在本节中,我们将讨论这项广泛应用于计算机视觉的技术。

In [1]:

%matplotlib inline
import torch
import torchvision
from torch import nn
from d2l import torch as d2l

常用的图像增广方法

在对常用图像增广方法的探索时,我们将使用下面这个尺寸为400×500的图像作为示例。

In [2]:

d2l.set_figsize()
img = d2l.Image.open('../img/cat1.jpg')
d2l.plt.imshow(img);
<Figure size 252x180 with 1 Axes>

在这里插入图片描述

大多数图像增广方法都具有一定的随机性。为了便于观察图像增广的效果,我们下面定义辅助函数apply。 此函数在输入图像img上多次运行图像增广方法aug并显示所有结果。

In [3]:

def apply(img, aug, num_rows=2, num_cols=4, scale=1.5):
    Y = [aug(img) for _ in range(num_rows * num_cols)]
    d2l.show_images(Y, num_rows, num_cols, scale=scale)
翻转和裁剪

[左右翻转图像]通常不会改变对象的类别。这是最早且最广泛使用的图像增广方法之一。 接下来,我们使用transforms模块来创建RandomFlipLeftRight实例,这样就各有50%的几率使图像向左或向右翻转。

In [4]:

apply(img, torchvision.transforms.RandomHorizontalFlip())

在这里插入图片描述

[上下翻转图像]不如左右图像翻转那样常用。但是,至少对于这个示例图像,上下翻转不会妨碍识别。接下来,我们创建一个RandomFlipTopBottom实例,使图像各有50%的几率向上或向下翻转。

In [5]:

apply(img, torchvision.transforms.RandomVerticalFlip())

在这里插入图片描述

在我们使用的示例图像中,猫位于图像的中间,但并非所有图像都是这样。 在 :numref:sec_pooling中,我们解释了汇聚层可以降低卷积层对目标位置的敏感性。 另外,我们可以通过对图像进行随机裁剪,使物体以不同的比例出现在图像的不同位置。 这也可以降低模型对目标位置的敏感性。

在下面的代码中,我们[随机裁剪]一个面积为原始面积10%到100%的区域,该区域的宽高比从0.5到2之间随机取值。 然后,区域的宽度和高度都被缩放到200像素。 在本节中(除非另有说明),𝑎和𝑏之间的随机数指的是在区间[𝑎,𝑏]中通过均匀采样获得的连续值。

In [6]:

shape_aug = torchvision.transforms.RandomResizedCrop(
    (200, 200), scale=(0.1, 1), ratio=(0.5, 2))
apply(img, shape_aug)

在这里插入图片描述

改变颜色

另一种增广方法是改变颜色。 我们可以改变图像颜色的四个方面:亮度、对比度、饱和度和色调。 在下面的示例中,我们[随机更改图像的亮度],随机值为原始图像的50%(1−0.5)到150%(1+0.5)之间。

In [7]:

apply(img, torchvision.transforms.ColorJitter(
    brightness=0.5, contrast=0, saturation=0, hue=0))

在这里插入图片描述

同样,我们可以[随机更改图像的色调]。

In [8]:

apply(img, torchvision.transforms.ColorJitter(
    brightness=0, contrast=0, saturation=0, hue=0.5))

在这里插入图片描述

我们还可以创建一个RandomColorJitter实例,并设置如何同时[随机更改图像的亮度(brightness)、对比度(contrast)、饱和度(saturation)和色调(hue]。

In [9]:

color_aug = torchvision.transforms.ColorJitter(
    brightness=0.5, contrast=0.5, saturation=0.5, hue=0.5)
apply(img, color_aug)

在这里插入图片描述

[结合多种图像增广方法]

在实践中,我们将结合多种图像增广方法。比如,我们可以通过使用一个Compose实例来综合上面定义的不同的图像增广方法,并将它们应用到每个图像。

In [10]:

augs = torchvision.transforms.Compose([
    torchvision.transforms.RandomHorizontalFlip(), color_aug, shape_aug])
apply(img, augs)

在这里插入图片描述

使用图像增广进行训练

让我们使用图像增广来训练模型。 这里,我们使用CIFAR-10数据集,而不是我们之前使用的Fashion-MNIST数据集。 这是因为Fashion-MNIST数据集中对象的位置和大小已被规范化,而CIFAR-10数据集中对象的颜色和大小差异更明显。 CIFAR-10数据集中的前32个训练图像如下所示。

In [11]:

all_images = torchvision.datasets.CIFAR10(train=True, root="../data",
                                          download=True)
d2l.show_images([all_images[i][0] for i in range(32)], 4, 8, scale=0.8);

在这里插入图片描述

为了在预测过程中得到确切的结果,我们通常对训练样本只进行图像增广,且在预测过程中不使用随机操作的图像增广。 在这里,我们[只使用最简单的随机左右翻转]。 此外,我们使用ToTensor实例将一批图像转换为深度学习框架所要求的格式,即形状为(批量大小,通道数,高度,宽度)的32位浮点数,取值范围为0到1

In [12]:

train_augs = torchvision.transforms.Compose([
     torchvision.transforms.RandomHorizontalFlip(),
     torchvision.transforms.ToTensor()])

test_augs = torchvision.transforms.Compose([
     torchvision.transforms.ToTensor()])

接下来,我们[定义一个辅助函数,以便于读取图像和应用图像增广]。PyTorch数据集提供的transform函数应用图像增广来转化图像。有关DataLoader的详细介绍,请参阅 :numref:sec_fashion_mnist

In [13]:

def load_cifar10(is_train, augs, batch_size):
    dataset = torchvision.datasets.CIFAR10(root="../data", train=is_train,
                                           transform=augs, download=True)
    dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size,
                    shuffle=is_train, num_workers=d2l.get_dataloader_workers())
    return dataloader
多GPU训练

我们在CIFAR-10数据集上训练 :numref:sec_resnet中的ResNet-18模型。 回想一下 :numref:sec_multi_gpu_concise中对多GPU训练的介绍。 接下来,我们[定义一个函数,使用多GPU对模型进行训练和评估]。

In [14]:

#@save
def train_batch_ch13(net, X, y, loss, trainer, devices):
    """用多GPU进行小批量训练"""
    if isinstance(X, list):
        # 微调BERT中所需(稍后讨论)
        X = [x.to(devices[0]) for x in X]
    else:
        X = X.to(devices[0])
    y = y.to(devices[0])
    net.train()
    trainer.zero_grad()
    pred = net(X)
    l = loss(pred, y)
    l.sum().backward()
    trainer.step()
    train_loss_sum = l.sum()
    train_acc_sum = d2l.accuracy(pred, y)
    return train_loss_sum, train_acc_sum

In [15]:

#@save
def train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs,
               devices=d2l.try_all_gpus()):
    """用多GPU进行模型训练"""
    timer, num_batches = d2l.Timer(), len(train_iter)
    animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0, 1],
                            legend=['train loss', 'train acc', 'test acc'])
    net = nn.DataParallel(net, device_ids=devices).to(devices[0])
    for epoch in range(num_epochs):
        # 4个维度:储存训练损失,训练准确度,实例数,特点数
        metric = d2l.Accumulator(4)
        for i, (features, labels) in enumerate(train_iter):
            timer.start()
            l, acc = train_batch_ch13(
                net, features, labels, loss, trainer, devices)
            metric.add(l, acc, labels.shape[0], labels.numel())
            timer.stop()
            if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
                animator.add(epoch + (i + 1) / num_batches,
                             (metric[0] / metric[2], metric[1] / metric[3],
                              None))
        test_acc = d2l.evaluate_accuracy_gpu(net, test_iter)
        animator.add(epoch + 1, (None, None, test_acc))
    print(f'loss {metric[0] / metric[2]:.3f}, train acc '
          f'{metric[1] / metric[3]:.3f}, test acc {test_acc:.3f}')
    print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec on '
          f'{str(devices)}')

现在,我们可以[定义train_with_data_aug函数,使用图像增广来训练模型]。该函数获取所有的GPU,并使用Adam作为训练的优化算法,将图像增广应用于训练集,最后调用刚刚定义的用于训练和评估模型的train_ch13函数。

In [16]:

batch_size, devices, net = 256, d2l.try_all_gpus(), d2l.resnet18(10, 3)

def init_weights(m):
    if type(m) in [nn.Linear, nn.Conv2d]:
        nn.init.xavier_uniform_(m.weight)

net.apply(init_weights)

def train_with_data_aug(train_augs, test_augs, net, lr=0.001):
    train_iter = load_cifar10(True, train_augs, batch_size)
    test_iter = load_cifar10(False, test_augs, batch_size)
    loss = nn.CrossEntropyLoss(reduction="none")
    trainer = torch.optim.Adam(net.parameters(), lr=lr)
    train_ch13(net, train_iter, test_iter, loss, trainer, 10, devices)

让我们使用基于随机左右翻转的图像增广来[训练模型]。

In [17]:

train_with_data_aug(train_augs, test_augs, net)

在这里插入图片描述

小结

  • 图像增广基于现有的训练数据生成随机图像,来提高模型的泛化能力
  • 为了在预测过程中得到确切的结果,我们通常对训练样本只进行图像增广,而在预测过程中不使用带随机操作的图像增广。
  • 深度学习框架提供了许多不同的图像增广方法,这些方法可以被同时应用。

练习

  1. 在不使用图像增广的情况下训练模型:train_with_data_aug(no_aug, no_aug)。比较使用与不使用图像增广的训练结果和测试精度。这个对比实验能支持图像增广可以减轻过拟合的论点吗?为什么?

    train_with_data_aug(test_augs, test_augs, net)
    在这里插入图片描述

    不使用数据增广过拟合更加严重

  2. 在基于CIFAR-10数据集的模型训练中结合多种不同的图像增广方法。它能提高测试准确性吗?

  3. 参阅深度学习框架的在线文档。它还提供了哪些其他的图像增广方法?

Discussions

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值