看文献过程中不断发现有太多不懂的基础知识,故长期更新这类blog不断补充在这过程中学到的知识。由于这些内容与我的研究方向并不一定强相关,故记录不会很深入请见谅。
【通信基础知识补充6】12月通信基础知识补充2
一、Walsh码
Walsh码(Walsh Code)是一类特殊的二进制码,广泛用于CDMA(Code Division Multiple Access)系统中,尤其是在通信系统中进行信号分离和多址接入。Walsh码具有许多优异的性质,尤其是在正交性和低相关性方面,使得它们成为多用户共享同一信道时有效的区分码。
1.1 Walsh码的基本特性
-
正交性:Walsh码的最大特点之一是它们的正交性。正交性意味着任何两个不同的Walsh码之间的内积为零。数学上,对于任意两个Walsh码 C i C_i Ci和 C j C_j Cj,其内积满足:
⟨ C i , C j ⟩ = ∑ k = 1 N C i ( k ) C j ( k ) = 0 (当 i ≠ j 时) \langle C_i, C_j \rangle = \sum_{k=1}^{N} C_i(k) C_j(k) = 0 \quad \text{(当 } i \neq j \text{时)} ⟨Ci,Cj⟩=k=1∑NCi(k)Cj(k)=0(当 i=j时)
其中, C i ( k ) C_i(k) Ci(k) 和 C j ( k ) C_j(k) Cj(k) 分别表示第 i i i 和第 j j j个Walsh码在第 k k k位的值, N N N是Walsh码的长度。由于内积为零,两个不同的Walsh码在接收端可以通过简单的匹配解码,互不干扰。 -
二进制形式:Walsh码是由 (+1) 和 (-1)(或等效的0和1)组成的二进制序列。
-
长度和数量:Walsh码的长度是2的幂次,即 N = 2 n N = 2^n N=2n,其中 (n) 是正整数。因此,Walsh码的集合中的码数量也是 2 n 2^n 2n个。长度为 N N N的Walsh码形成一个 N × N N \times N N×N 的矩阵,通常称为Walsh-Hadamard矩阵。
1.2 Walsh码的构造
Walsh码可以通过递归的方式构造,常见的构造方法是利用Hadamard矩阵。Hadamard矩阵是一种正交矩阵,其元素为+1和-1,并且满足其行与行之间的正交性。Walsh码就是Hadamard矩阵的行。
-
Hadamard矩阵的定义:Hadamard矩阵的基本性质是,它是一个大小为 N × N N \times N N×N的矩阵,其中每一行(和每一列)都是彼此正交的。Hadamard矩阵的构造规则是递归的,即给定一个 2 × 2 2 \times 2 2×2的矩阵,接下来可以通过特定规则递归生成更大尺寸的Hadamard矩阵。
-
基本Hadamard矩阵:
H 2 = [ 1 1 1 − 1 ] H_2 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} H2=[111−1] -
递归构造:从 (H_2) 开始,可以递归构造更大的Hadamard矩阵,例如:
H 4 = [ H 2 H 2 H 2 − H 2 ] H_4 = \begin{bmatrix} H_2 & H_2 \\ H_2 & -H_2 \end{bmatrix} H4=[H2H2H2−H2]
以此类推,可以得到更大的Hadamard矩阵。
-
-
Walsh码的构造:通过提取Hadamard矩阵中的每一行,就可以得到不同的Walsh码。比如,Hadamard矩阵 H 4 H_4 H4对应的四个Walsh码就是该矩阵的四行。
1.3 Walsh码的应用
-
CDMA中的应用:在CDMA系统中,用户通过分配不同的Walsh码来区分彼此的信号。由于Walsh码之间的正交性,接收端可以通过匹配滤波(匹配码字)来解码每个用户的信号,从而有效地分离各个用户的通信信号。
-
信号分离:由于Walsh码是正交的,在接收端可以通过简单的内积计算将不同用户的信号从接收到的叠加信号中分离出来。具体来说,接收信号与一个特定的Walsh码进行相关性计算,最大相关性对应的用户信号就是该用户的信号。
-
多址接入:在多用户场景下,CDMA系统通过不同的Walsh码将不同用户的信号进行编码,并且这些信号可以在相同的时间和频率资源上传输。Walsh码的正交性保证了用户之间不会发生相互干扰。
1.4 Walsh码的优点与局限性
-
优点:
- 正交性强:Walsh码的正交性使得它们在多用户环境中具有较强的抗干扰能力。
- 简单易用:Walsh码的生成和解码过程简单,且具有数学上的良好性质(如低相关性)。
- 适用于同步系统:Walsh码广泛应用于同步的CDMA系统中,特别是在通信链路中需要对多用户信号进行区分时。
-
局限性:
- 资源限制:由于Walsh码的长度是2的幂次,所以系统中可用的Walsh码数量有限,尤其在用户数目大、系统规模复杂时,Walsh码的资源可能无法满足需求。
- 相干性问题:虽然Walsh码之间是正交的,但在实际通信中,由于信道干扰、噪声和多径效应等因素,Walsh码的正交性可能会受到一定影响,导致干扰和误码。
1.5 Walsh代码(matlab)
% Walsh码的生成和验证正交性、相关性
N = 8; % Walsh码的长度
% 生成Hadamard矩阵(也就是Walsh码的生成过程)
W = hadamard(N); % Hadamard矩阵直接给出Walsh码
% 显示Walsh码
disp('Walsh码矩阵:');
disp(W);
% 验证正交性:Walsh码的正交性要求任意两个不同的Walsh码的内积为零
orthogonality_check = W' * W; % Walsh码的正交性检验
disp('Walsh码的正交性检查(W''*W):');
disp(orthogonality_check);
% 验证自相关性:自相关性在时间域上,Walsh码的自相关性要求同一个Walsh码与自身的内积为长度,其他为零
autocorrelation = W * W'; % Walsh码自相关性检查
disp('Walsh码的自相关性检查');
disp(autocorrelation);
% 绘制Walsh码图像
figure;
subplot(2,1,1);
imagesc(W); % 展示Walsh码矩阵
title('Walsh码矩阵');
xlabel('列索引');
ylabel('行索引');
% 可视化每个Walsh码
subplot(2,1,2);
hold on;
for i = 1:N
plot(W(i,:), 'DisplayName', ['Walsh码 ' num2str(i)]);
end
hold off;
legend show;
title('每个Walsh码的波形');
xlabel('时间索引');
ylabel('值');
1.6 总结
Walsh码是一种具有正交性的二进制码,广泛应用于CDMA等通信系统中,它的主要优势在于能够有效区分多个用户的信号,并且简单易用。通过Hadamard矩阵的递归构造,可以生成不同长度的Walsh码,适用于信号分离和多址接入。尽管Walsh码在多用户通信中具有显著优势,但其应用也受到资源限制,尤其是在用户数量庞大的系统中,需要其他技术的支持来提高系统的容量和灵活性。
二、对比Walsh码和ZCS
2.1 基本性质
-
Walsh码:
- 类型:正交序列
- 组成:二进制序列(值为+1或-1)
- 正交性:具有严格的正交性,即任何两个不同的Walsh码之间的内积为零。
- 用途:主要用于多址接入(CDMA)中的用户信号区分。
- 长度:Walsh码的长度必须是2的幂次,且系统中可用的Walsh码数量也限制于该长度。
- 生成方式:通过Hadamard矩阵递归构造。
-
Zadoff-Chu序列:
- 类型:复数序列(通常为复数指数形式)
- 组成:复数序列,其值可以是单位复数。
- 正交性:没有直接的序列间正交性,但具有理想的自相关特性,能够在不同时间点进行准确的信号分离。
- 用途:主要用于导频、同步、信道估计、以及MIMO系统中的信号设计。
- 长度:Zadoff-Chu序列的长度为任意长度,但必须满足某些数学条件(如长度为质数)。
- 生成方式:通过数学公式构造,具有独特的自相关性质。
2.2 正交性
-
Walsh码:具有严格的正交性。每对不同的Walsh码之间在所有时间点的内积为零,这使得它们在多用户系统中可以完全区分用户信号,避免干扰。
-
Zadoff-Chu序列:虽然Zadoff-Chu序列之间并不直接正交,但它们具有非常强的自相关性。即使两个不同的Zadoff-Chu序列在时间上叠加,接收端依然可以通过自相关函数将它们有效地分开,特别是在导频和同步信号中,这一点非常有用。
2.3 应用场景
-
Walsh码:
- CDMA系统:在传统的CDMA系统中,Walsh码用于区分不同用户的信号。在这种情况下,每个用户被分配一个唯一的Walsh码,以便在同一信道上传输信号。
- 多址接入:通过正交性,CDMA能够实现多个用户的并行通信,且不会互相干扰。
- 信号区分:适用于用户信号的有效区分,尤其是在信道质量较好的情况下。
-
Zadoff-Chu序列:
- 同步和导频:Zadoff-Chu序列常用于通信系统中的同步信号、导频信号等,需要良好自相关性的场景。例如,在LTE和5G系统中,Zadoff-Chu序列用于小区同步信号(PSS/SSS)和导频信号。
- MIMO系统:在MIMO(多输入多输出)系统中,Zadoff-Chu序列因其优异的自相关特性,经常用于信道估计和干扰抑制。
- 频率选择性衰落:适用于频率选择性衰落环境,特别是在存在多径效应的无线环境中。
2.4 正交性和干扰
-
Walsh码:正交性保证了不同用户的信号可以完全分开,避免了多用户干扰。然而,这种正交性要求系统中所有的用户使用不同的码字,且码字长度和数量受到系统资源的限制。
-
Zadoff-Chu序列:虽然Zadoff-Chu序列不具有用户之间直接的正交性,但它的自相关性质极为优越,即使在噪声或干扰较大的环境下,接收端依然可以准确地识别出信号。这使得Zadoff-Chu序列非常适合用于导频信号或同步信号的设计,而无需严格的正交性约束。
2.5 频谱特性
-
Walsh码:由于Walsh码的设计要求其长度是2的幂次,它的频谱特性较为平坦,适合于对称的多址接入。Walsh码对频谱的利用是较为传统的方式,适用于信道干扰较小的场景。
-
Zadoff-Chu序列:Zadoff-Chu序列在频域上具有很好的选择性。它的频谱特性使其在频率选择性衰落的信道环境下,能够更好地对抗多径干扰,因此非常适合在复杂的无线通信环境中使用。
2.6 资源限制
-
Walsh码:资源有限性是Walsh码的一个问题。由于Walsh码的数量和长度是固定的,系统中可用的码字数量会限制系统的扩展性。在用户数目过多或系统规模较大的情况下,Walsh码可能无法满足需求。
-
Zadoff-Chu序列:Zadoff-Chu序列的资源限制较小。由于它们的生成不依赖于正交性,因此可以生成大量不同的序列,用于导频信号或其他同步信号。这使得Zadoff-Chu序列在需要多种导频或同步信号的场景中具有更大的灵活性。
2.7 系统设计和实现复杂性
-
Walsh码:Walsh码的实现较为简单,通过Hadamard矩阵的递归构造可以快速生成,并且其解码过程通常通过匹配滤波器完成,系统设计相对简单。
-
Zadoff-Chu序列:Zadoff-Chu序列的生成和实现较为复杂,特别是需要精确控制频谱特性和自相关特性。尽管如此,其优异的自相关性质在需要高精度信号同步和信道估计的现代通信系统中具有重要作用。
2.8 总结对比
特性 | Walsh码 | Zadoff-Chu序列 |
---|---|---|
正交性 | 严格正交 | 没有直接正交性,主要体现在自相关性 |
主要用途 | 多址接入(CDMA) | 同步信号、导频、MIMO、频率选择性衰落 |
生成方式 | Hadamard矩阵构造 | 数学公式构造 |
资源限制 | 码字数量和长度有限 | 可生成大量不同的序列 |
频谱特性 | 平坦频谱 | 良好的频域选择性 |
自相关特性 | 自相关较差,主要依赖正交性 | 优异的自相关性(适用于同步、导频) |
实现复杂度 | 相对简单 | 较为复杂,但非常强大 |
应用领域 | 用户信号分离 | 导频、同步、MIMO、信道估计 |
是否为复数序列 | 否(实数序列) | 是(复数序列) |