优化的求众数方法 - 摩尔投票算法(算法思想+求众数的三种方法+摩尔投票算法改进版求众数 II)

本文介绍了摩尔投票算法,这是一种在O(n)时间和O(1)空间复杂度下查找元素序列中众数的高效方法。通过算法详细解释和示例,阐述了如何解决LeetCode的169. 求众数和229. 求众数 II问题。对于求众数 II,提出了算法的升级版,即选择三个不相同的数字删除,以找到出现次数超过1/3的元素。
摘要由CSDN通过智能技术生成

摩尔投票算法是一种在线性时间O(n)和空间复杂度O(1)的情况下,在一个元素序列中查找包含最多的元素的典型的流算法。

下面用此算法来解LeetCode的169. 求众数、229. 求众数 II。

一、求众数:

给定一个大小为 n 的数组,找到其中的众数。众数是指在数组中出现次数大于 ⌊ n/2 ⌋ 的元素。
你可以假设数组是非空的,并且给定的数组总是存在众数。

示例 1:
输入: [3,2,3]
输出: 3

示例 2:
输入: [2,2,1,1,1,2,2]
输出: 2

1.普通方法(二重循环):(此方法在数据量大时,必然消耗时间很大)

class Solution {
    public int majorityElement(int[] nums) {
    	int n = nums.length/2;
        for(int i=0; i<nums.length; i++){
            int count = 0;
            for(int j=0; j<nums.length; j++){
               if(nums[j] == nums[i]){
                   count++;
               }
            }
            if(count > n){
                return nums[i];
            }else{
       
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值