高光谱学习---正交子空间投影法OSP(Orthogonal Subspace Projection)

本文深入探讨了正交子空间投影(Orthogonal Subspace Projection, OSP)算法,该算法主要用于高光谱图像的分类与数据降维。通过将像素向量投影到正交子空间,消除干扰信号,增强并提取感兴趣目标的特征。文章详细解析了算法的两步战略,包括干扰信号的剔除和感兴趣信号的提取,并介绍了正交投影分类的具体实现。

Orthogonal Subspace Projection

写在前面:为了更好的后期修改,如果各位觉得有哪里可以补充或者优化,直接从我这里下载,然后发给我,你也是作者之一。
本文文本下载链接://download.csdn.net/download/qq_43110298/12116806(也可以在本人的下载中找到)
直接修改后在评论区联系我

本文引用了以下文献。各位也可以参考看看
1.Hyperspectral Image Classification and Dimensionality Reduction An Orthogonal Subspace Projection Ap
link.
2.Chein-I Chang-Hyperspectral Data Exploitation_ Th

作者1:Luna_Lovegood_001

1.1算法目标

首次看到这个算法是在文献2中,有了一个好的引入:
他认为高光谱的channel(通道)过多:

  1. 数据过于overwhelming and not necessary

  2. 这会导致所谓的数据污染,原书中这样说(文献2):

some information resulting from unknown signal sources may contaminate and distort the information that we try to extract.

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值