机器学习实战(第二章KNN)

KNN分类算法

设待分类的样本有A0,B0,C0三个特征,另一个带label的样本特征为A1,B2,C3.对两者求欧氏距离\sqrt{A0^{2}-A1^{2}+B0^{2}-B1^{2}+C0^{2}-C1^{2}}得到两者的差距。对M个样本算距离选取前N个label数量最多的作为待分类样本的label

训练逻辑:将训练集的label和样本为测试集的待分类样本做预测,将预测结果与真实label对比得出准确度

def classify0(inX, dataSet, labels, k):
	#numpy函数shape[0]返回dataSet的行数
	dataSetSize = dataSet.shape[0]
	#在列向量方向上重复inX共1次(横向),行向量方向上重复inX共dataSetSize次(纵向)
	diffMat = np.tile(inX, (dataSetSize, 1)) - dataSet
	#二维特征相减后平方
	sqDiffMat = diffMat**2
	#sum()所有元素相加,sum(0)列相加,sum(1)行相加
	sqDistances = sqDiffMat.sum(axis=1)
	#开方,计算出距离
	distances = sqDistances**0.5
	#返回distances中元素从小到大排序后的索引值
	sortedDistIndices = distances.argsort()
	#定一个记录类别次数的字典
	classCount = {}
	for i in range(k):
		#取出前k个元素的类别
		voteIlabel = labels[sortedDistIndices[i]]
		#dict.get(key,default=None),字典的get()方法,返回指定键的值,如果值不在字典中返回默认值。
		#计算类别次数
		classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
	#python3中用items()替换python2中的iteritems()
	#key=operator.itemgetter(1)根据字典的值进行排序
	#key=operator.itemgetter(0)根据字典的键进行排序
	#reverse降序排序字典
	sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1),reverse=True)
	print(sortedClassCount)
	#返回次数最多的类别,即所要分类的类别
	return sortedClassCount[0][0]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值