大模型解决方案:具体业务场景下的智能表单填充(附代码)

本文介绍了如何使用大模型解决业务场景下的智能表单填充问题。通过结合OCR技术、形态学图像增强、定制化Prompt及数据桥接,实现了从图像到表单的高效自动化填充。提供了相关代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大模型相关目录

大模型,包括部署微调prompt/Agent应用开发、知识库增强、数据库增强、知识图谱增强、自然语言处理、多模态等大模型应用开发内容
从0起步,扬帆起航。

  1. 大模型应用向开发路径:AI代理工作流
  2. 大模型应用开发实用开源项目汇总
  3. 大模型问答项目问答性能评估方法
  4. 大模型数据侧总结
  5. 大模型token等基本概念及参数和内存的关系
  6. 大模型应用开发-华为大模型生态规划
  7. 从零开始的LLaMA-Factory的指令增量微调
  8. 基于实体抽取-SMC-语义向量的大模型能力评估通用算法(附代码)
  9. 基于Langchain-chatchat的向量库构建及检索(附代码)
  10. 一文教你成为合格的Prompt工程师
  11. 最简明的大模型agent教程
  12. 批量使用API调用langchain-chatchat知识库能力
  13. langchin-chatchat部分开发笔记(持续更新)
  14. 文心一言、讯飞星火、GPT、通义千问等线上API调用示例
  15. 大模型RAG性能提升路径
  16. langchain的基本使用
  17. 结合基础模型的大模型多源信息应用开发
  18. COT:大模型的强化利器
  19. 多角色大模型问答性能提升策略(附代码)
  20. 大模型接入外部在线信息提升应用性能
  21. 大模型解决方案:具体业务场景下的智能表单填充


概述

在许多业务场景下,存在大量从表单、铭牌、参数快照等图像数据中进行信息提取和填充的需求。
诸如数据摸排、信息录入、各时间颗粒度下的数据统计等业务,传统模式下主要通过人工手段完成,效率低、成本高、完成质量差。
传统OCR技术结合大模型文字处理能力,可实现具体场景下的智能表单填充解决方案。

技术路径

  1. 为解决图像可用性问题:运用形态学知识,对图像进行质量增强
  2. 为满足图像文字识别需求:利用OCR技术,对图像进行文字提取
  3. 为克服识别结果排布散乱、信息紊乱现象:预处理文字提取结果,设计专用性Prompt,提升大模型在该场景下的信息抽取、规整能力
  4. 为达成表单智能填充目的:结合实际业务需求,建立json数据和表单字段间的桥接关系,实现数据填充自动化

在这里插入图片描述

代码实现

大模型在线API请参考系列文章。
功能代码:

from paddleocr import PaddleOCR
import ask_Wenxin
import json
import re
from datetime import datetime
import os

def post_processing(input_data: dict):
    # 获取当下时间并format
    formatted_time = str(datetime.now().strftime("%Y_%m_%d_%H%M%S"))

    # 使用正则表达式匹配{}之间的内容
    pattern = r'{(.*?)}'</
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

写代码的中青年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值