实现函数double Power(double base, int exponent),求base的exponent次方。不得使用库函数,同时不需要考虑大数问题。
示例 1:
输入: 2.00000, 10
输出: 1024.00000
示例 2:
输入: 2.10000, 3
输出: 9.26100
示例 3:
输入: 2.00000, -2
输出: 0.25000
解释: 2-2 = 1/22 = 1/4 = 0.25
说明:
-100.0 < x < 100.0
n 是 32 位有符号整数,其数值范围是 [−231, 231 − 1] 。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/shu-zhi-de-zheng-shu-ci-fang-lcof
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
快速幂解法
class Solution {
public:
double myPow(double x, int n) {
//快速幂
//n用二进制表示
if(x == 0) return 0;
//因为int的范围是 -2147483648, 2147483674 当n为负数时,再变为正,是会越界的
long b = n; //所以用long类型来 存放n
double res = 1.0;
if(b < 0){
b = -b; //用long防止溢出
x = 1 / x;
}
/*
b是指数
x是底数
b = 9 = 1001
= 1*1 + 0*2 + 0*4 + 1*8
= 1 * 2的0次方 + 0 * 2的1次方 + 0 * 2的2次方 + 1 * 2的3次方
x^b = x^9 = x^1*1 * x^0*2 * x^0*4 * x^1*8
*/
while(b){
//n&1 (与操作): 判断 n 二进制最右一位是否为 1 ;(即 n % 2 == 1)
//从指数二进制的最低位开始判断
//如果某一二进制位上是0,就不进行相乘,em~就是不在res上累乘
if(b & 1) res *= x; // res = res * x;
x *= x; // x = x^2;
b >>= 1; // b //= 2;
}
return res;
}
};