DCT变换公式

一维DCT

F ( u ) = c ( u ) ∑ i = 0 N − 1 f ( i ) c o s ( ( i + 0.5 ) π N u ) F(u)=c(u)\sum_{i=0}^{N-1}{f(i)cos(\frac{(i+0.5)\pi}{N}u)} F(u)=c(u)i=0N1f(i)cos(N(i+0.5)πu)
c ( u ) = { 1 N u = 0 2 N u ≠ 0 c(u)=\left\{ \begin{aligned} \sqrt{\frac{1}{N} } && u=0\\ \sqrt{\frac{2}{N} } && u\neq 0\\ \end{aligned} \right. c(u)=N1 N2 u=0u=0
f ( i ) f(i) f(i)为原始的信号,F(u)是DCT变换后的系数,N为原始信号的点数,c(u)可以认为是一个补偿系数,可以使DCT变换矩阵为正交矩阵

一维IDCT

f ( i ) = c ( u ) ∑ u = 0 N − 1 F ( u ) c o s ( ( i + 0.5 ) π N u ) f(i)=c(u)\sum_{u=0}^{N-1}{F(u)cos(\frac{(i+0.5)\pi}{N}u)} f(i)=c(u)u=0N1F(u)cos(N(i+0.5)πu)
c ( u ) = { 1 N u = 0 2 N u ≠ 0 c(u)=\left\{ \begin{aligned} \sqrt{\frac{1}{N} } && u=0\\ \sqrt{\frac{2}{N} } && u\neq 0\\ \end{aligned} \right. c(u)=N1 N2 u=0u=0
f ( i ) f(i) f(i)为原始的信号,F(u)是DCT变换后的系数,N为原始信号的点数,c(u)可以认为是一个补偿系数

过程推导:详解离散余弦变换(DCT)

更多参考:DCT变换、DCT反变换、分块DCT变换

DCT变换的基函数与基图像

DCT变换详解(附代码)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值