1.矩阵等价
2.矩阵相似
3.矩阵合同
矩阵等价
定义
如果矩阵A经过有限次初等行变换变成矩阵B,就成矩阵A与B行等价。
如果矩阵A经过有限次初等列变换变成矩阵B,就成矩阵A与B列等价。
如果矩阵A经过有限次初等变换变成矩阵B,就称矩阵A与B等价。
性质
反身性:A~A
对称性:若AB,则BA
传递性:若AB,BC,则A~C
推论:
有两个m×n阶矩阵A和B,如果这两个矩阵满足B=QAP(P是n×n阶可逆矩阵,Q是m×m阶可逆矩阵),那么这两个矩阵之间是等价关系。
r(A)=r(B),且A与B为同型矩阵。
1. 秩相等:等价矩阵具有相同的秩。秩是矩阵的一个重要特征,它代表了矩阵中线性无关的行或列的个数。等价矩阵的秩相等说明它们拥有相同的线性无关信息。
2. 行列式相等:两个等价矩阵的行列式要么同时为零,要么同时不为零。行列式是矩阵的一个重要性质,它可以反映矩阵的可逆性以及线性变换的几何意义。
3. 特征值相等:等价矩阵可能拥有不同的特征值。但对于一些特定的等价变换,例如只进行初等行变换,特征值将保持不变。
4. 可逆性相同:两个等价矩阵的行列式要么同时为零,要么同时不为零,因此它们的可逆性相同。如果一个矩阵可逆,那么另一个矩阵也一定可逆,反之亦然。
5. 零空间相同:等价矩阵具有相同的零空间。零空间是指矩阵的核空间,即所有被矩阵映射为零向量的向量组成的集合。零空间反映了矩阵的线性依赖关系。
6. 行空间相同:等价矩阵具有相同的行空间。行空间是指由矩阵所有行的线性组合所生成的向量空间。行空间反映了矩阵的线性无关信息。
7. 列空间相同:等价矩阵具有相同的列空间。列空间是指由矩阵所有列的线性组合所生成的向量空间。列空间反映了矩阵的线性无关信息。
8. 相同数量的线性无关行和列:等价矩阵具有相同的数量的线性无关行和列,这是由于它们的秩相等。
9. 可用于简化矩阵:等价关系可以用在矩阵的简化过程中,例如通过初等行变换和初等列变换将一个矩阵转化为另一个与之等价的矩阵。
矩阵相似
定义
设A、B都是n阶矩阵,若有可逆矩阵P,使P(-1)AP=B,则称B是A的相似矩阵,对A进行运算P(-1)AP称对A进行的相似变换,可逆矩阵P称为把A变成B的相似变换矩阵。
性质
1.若n阶矩阵A与B相似,则A与B的特征多项式相同,从而A与B的特征值相同。
2.n阶矩阵A与对角矩阵相似(A可以对角化)的充分必要条件是A有n个线性无关的特征向量。
推论
若n阶矩阵A与对角矩阵相似,则λ1,λ2,λ3…λn即是A的n个特征值。
如果n阶矩阵A的n个特征值互不相等,则A与对角矩阵相似。
A与某对角矩阵相似,B也与该对角矩阵相似,则A与B相似。
|A|=|B|,r(A)=r(B),A与B迹相等。
矩阵合同
一般在线代问题中,研究合同矩阵的场景是在二次型中。二次型用的矩阵是实对称矩阵。两个实对称矩阵合同的充要条件是它们的正负惯性指数相同。由这个条件可以推知,合同矩阵等秩。
定义
b两个n阶矩阵A和B,如果存在可逆矩阵C使得C^(T)AC=B,则称A与B合同,并称由A到B的变换为合同变换,称C为合同变换的矩阵。
性质
一个二次型是半正定二次型,当且仅当它的正惯性指数等于它对应矩阵的秩。对于半正定二次型,其对应的对称矩阵在实数域内可以合同到一个对角线元素只由0和1构成的对角矩阵。
正定二次型对应矩阵一定是可逆矩阵,且行列式大于0。对于正定二次型,其对应的对称矩阵在实数域内合同于单位阵。一个n元二次型是正定二次型,当且仅当它的正惯性指数是n,同样的可以定义半负定、负定和不定的二次型。
一、矩阵等价、相似和合同之间的区别:
1、等价,相似和合同三者都是等价关系。
2、矩阵相似或合同必等价,反之不一定成立。
3、矩阵等价,只需满足两矩阵之间可以通过一系列可逆变换,也即若干可逆矩阵相乘得到。
4、矩阵相似,则存在可逆矩阵P使得,AP=PB。
5、矩阵合同,则存在可逆矩阵P使得,P^TAP=B。
6、当上述矩阵P是正交矩阵时,即PT=P(-1),则有A,B之间既满足相似,又满足合同关系。
二、矩阵等价、相似、合同之间联系:
1、矩阵等秩是相似、合同、等价的必要条件,相似、合同、等价是等秩的充分条件。
2、矩阵等价是相似、合同的必要条件,相似、合同是等价的充分条件。
3、 矩阵相似、合同之间没有充要关系,存在相似但不合同的矩阵,也存在合同但不相似的矩阵。
4、总结起来就是:相似=>等价,合同=>等价,等价=>等秩。