癫痫数据集-波恩大学数据集

  该数据集是由 5 个健康人和 5 个癫痫患者的脑电数据构成的,共包含有 5 个数据子集,分别是 F、S、N、Z、O。数据描述如表 2。波恩数据集为单通道数据集,其中每个子数据集都包含100个数据片段,每个数据片段的时间长度为23.6秒,数据点为 4097个。信号的分辨率为12位,采样频率为173.61Hz。

  每一个子集包含100个长度为23.6秒,采样频率173.61Hz的单通道EEG。这些片段被从长程多通道EEG上人工剪切下来。在剪切过程中,一些可能存在的干扰被同时去除,这些干扰包含肌动伪迹,眼动伪迹,等等。
  如图二所示

在这里插入图片描述
  子集Z/O采自5个健康人构成的对照组。头皮电极分布为国际10-20系统图1。z中片段为受试者睁眼时EEG,o中为受试者闭眼时EEG。

  子集N/F/S为颅内EEG,采自5个术前已确诊病人。这些病人己经通过局部海马结构切除使得其癫痫完全可控。

  切除区域己通过临床验证确为致痫灶。子集F中包含从癫痫灶中采集的EEG,子集N中包含从灶对侧采集的EEG。N和F的采集与癫痫发作间期。子集S中包含了发作期EEG。子集N、F采自深部电极。在放置深部电极的同时,一些条状电极也被置于新皮质层的侧区和底区,子集S中包含了所有颅内电极采集到的发作期EEG。
在这里插入图片描述
在这里插入图片描述

        大脑信号波频率成分
在这里插入图片描述
下载地址:包含原始文件,matlab预处理脚本,最终的mat格式文件。
https://download.csdn.net/download/qq_43158059/16503057

### 波恩大学癫痫EEG数据预处理方法 对于波恩大学癫痫EEG数据集的预处理,通常涉及多个步骤来确保数据适合后续分析和机器学习模型训练。以下是详细的预处理流程: #### 数据读取与初步清理 首先需要加载原始`.dat`文件并转换成MATLAB或其他编程环境可操作的数据结构。由于这些数据已经过初步去噪处理[^4],因此主要关注于如何进一步优化信号质量。 ```matlab load('your_file_path_here.dat'); % 加载 .dat 文件 data = double(data); % 转换为双精度浮点数数组以便计算 ``` #### 小波变换分解 采用多分辨率分析技术——离散小波变换(DWT),可以有效分离不同频带内的信息。具体实现如下所示: ```matlab for i = 1:size(data, 3) signal_slice = data(:, :, i); [coefficients, levels] = wavedec(signal_slice, 6, 'db4'); approximations{i} = wrcoef('a', coefficients, levels, 'db4', 6); details_3{i} = wrcoef('d', coefficients, levels, 'db4', 3); details_4{i} = wrcoef('d', coefficients, levels, 'db4', 4); details_5{i} = wrcoef('d', coefficients, levels, 'db4', 5); details_6{i} = wrcoef('d', coefficients, levels, 'db4', 6); end ``` 这里选择了Daubechies 4作为母小波基底,并进行了六层的小波分解。通过这种方式可以从原始EEG记录中提取出delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–30 Hz) 和 gamma (>30 Hz) 频段的信息[^3]。 #### 特征工程 基于上述得到的不同层次细节系数,接下来要计算统计量如标准差、均值等作为特征向量的一部分。这有助于捕捉时间序列中的变化模式以及潜在异常情况的存在与否。 ```matlab features_matrix = []; for idx = 1:length(details_3) feature_vector = [ std(approximations{idx}), ... std(details_3{idx}), ... std(details_4{idx}), ... std(details_5{idx}), ... std(details_6{idx}) ]; features_matrix(idx, :) = feature_vector; end save('processed_features.mat', 'features_matrix'); ``` 此过程不仅限于简单的方差度量;还可以考虑其他高级指标比如能量比率、熵等等,视具体情况而定。 #### 结果保存 最后一步就是将经过处理后的特征矩阵存储下来供之后建模阶段调用。以上代码片段展示了如何利用MATLAB内置函数完成整个工作流。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

高山仰止景

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值