Once Detected, Never Lost:阅读记录

本文探讨了一种名为OnceDetected-NeverLost的流程,通过改进BaseDetector和FSD,采用跳帧策略结合dropout防止过拟合,以及ImmortalTracker策略来处理轨迹断裂。文章重点介绍了Track-centricLearning方法,包括组织追踪输入、运动状态无关的timestamp编码等步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文:Once Detected, Never Lost:
方向:人工标注的优化

Once Detected, Never Lost 流程

  1. Base Detector
    • FSD 修改
      1. 在离线系统中,可以使用未来帧可能是可以表现更好
      2. 为了兼顾更多的时序信息,采用了跳帧策略。论文中采样了9帧
        [ t − 8 , t − 6 , ⋅ ⋅ ⋅ , t , ⋅ ⋅ ⋅ , t + 6 , t + 8 ] [t − 8, t − 6, · · · , t, · · · , t + 6, t + 8] [t8,t6,⋅⋅⋅,t,⋅⋅⋅,t+6,t+8]
      3. 为了防止过拟合,采用了 dropout策略,随机(20%)丢弃一半所采样的帧。
  2. Bidirectional Multi-object Tracking
    • Forward Tracking
      • 不丢失的简单策略就是:如果检测丢失,使用运动模型的预测结果
      • Immortal Tracker: Tracklet Never Dies.论文地址code,这篇论文支持这种策略
      • 使用‘Immortal’策略可以关联由于遮挡或检测miss而导致轨迹断裂的情况
    • Backtracing
      • Immortal Tracker 只是向前补充丢失框,理论上出现轨迹之前,就应该有框
      • 所以,增加向过去延伸的运动模型,找到轨迹的起点
      • 值得注意的是,由于这种方案带来的检测框很可能时FP的(虚假轨迹),随后处理

Track-centric Learning 流程(书接上回:文本核心部分)

  • Organizing Track Input
    • Multiple-In-Multiple-Out
    • Motion-state Agnostic
    • Timestamp Encoding
  • Sparse Feature Extraction
    • Track Features
    • Object Features
  • Label Assignment
    • Track IoU
    • Assignment
  • Detection Head and Losses
    • Classification
    • Regression
  • Post-processing
    • Remove empty predictions.
    • Track TTA
    • Track Coherence Optimization (TCO)

(先写到这里,后续再补充)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小兮风

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值