论文阅读
文章平均质量分 76
小兮风
这个作者很懒,什么都没留下…
展开
-
Hybrid-SORT: Weak Cues Matter for Online Multi-Object Tracking
多目标跟踪旨在检测和帧与帧之间关联所有感兴趣的目标。现有的很多方法都完成了这个任务通过探索和利用一些强相关线索(空间和外观),这些线索在实例之间有巨大差异性。但是,当目标发生遮挡或者聚集时,由于目标的高度重叠,位置信息和外观信息就会变得混乱。本文证明了使用一些弱线索可以解决上述的MOT挑战随着速度方向的,我们引入了置信度和高度作为潜在的弱线索。本文的方法具有,简单实时在线的优势。此外,我们的方法以即插即用和无训练的方式对不同的跟踪器和场景显示了很强的泛化。原创 2024-08-09 20:26:24 · 345 阅读 · 0 评论 -
V2I-Calib: A Novel Calibration Approach for Collaborative Vehicle and Infrastructure LiDAR Systems
车路协同激光雷达系统具有巨大的潜力,但目前面临着许多挑战。车路协同系统,对激光雷达系统进行标定是确保感知系统数据的准确性和一致性的关键步骤,因此需要实时和稳定的标定方法。为此,本文介绍了一种利用检测框进行空间关联,从而实现车路协同的激光雷达系统的新标定方法。该方法围绕一种新的整体IoU为中心,该指标反映了车辆和基础设施之间目标的相关性,能够实时监测校准结果。本文通过构造一个相似矩阵来寻找车辆和基础设施节点之间的公共检测框随后,对这些检测框进行了外部参数的计算和优化。原创 2024-07-16 19:12:43 · 270 阅读 · 0 评论 -
Forecasting from LiDAR via Future Object Detection
1.目标检测和预测是具身感知的基本组成部分。2. 然而,这两个问题目前都是孤立地进行研究3. 在本文中,我们提出了一种端到端基于点云数据的端到端检测和运动预测方法,而不是根据一些真值。4. 我们不是预测当前的帧位置再向前预测,而是直接预测未来的物体位置和反推每个轨迹的起点5. 与其他模块化或端到端基线相比,我们的方法不仅提高了整体的准确性,而且还促使我们重新思考显式跟踪在具体化感知中的作用。原创 2024-06-30 18:17:59 · 458 阅读 · 0 评论 -
Sparse4D v3: Advancing End-to-End 3D Detection and Tracking
未来sparse 4D 会不会有v4 v5 v6 我们期待一下…时隔半年 对V2 再次改进 也是目前的先进的版本吗?YOLO 也是v3 之后原作者没参与了。原创 2024-06-30 13:45:26 · 666 阅读 · 0 评论 -
Sparse4Dv2
稀疏算法在多视角时序感知任务中,非常灵活本文,提出另一个增强版本的Sparse4D ,改进了时序融合模块,是利用递归的方式实现了多帧特征采样有效的解耦了图像特征和结构化的锚框特征,Sparse4D 可以实现时序特征的高效转换,从而仅通过稀疏特征的逐帧传递来促进时序融合。递归的时序融合方法有两个主要的好处。首先,它将时序融合的计算复杂度从O (T)降低到O (1),其次,它使长时间信息的融合成为可能,从而由于时序融合而导致更显著的性能改进。原创 2024-06-26 23:07:57 · 1305 阅读 · 0 评论 -
Sparse4D v1
多视角的3D感知是自动驾驶系统的关键一环,部署成本低的优势。相较于LiDAR, 相机可以为远距离目标提供视觉线索但是,相机没有深度信息,这就导致了从2d图像中感知3d目标,是一个长期的病态问题。如何融合多视角信息,解决3D感知任务,是一个有意思的问题现在有2种主流方式,一种是基于bev的方法,一种是基于sparse的方法。BEV的方法就是将多个视图特征转到统一的BEV空间,实现一个比较好的表现效果但是BEV方法也有一些劣势。原创 2024-06-24 23:32:04 · 935 阅读 · 0 评论 -
论文阅读:MOTR
MOTR: End-to-End Multiple-Object Tracking with TRansformer,首篇端到端MOT工作原创 2024-06-15 17:14:29 · 238 阅读 · 1 评论