向量点乘相关公式推导及 几何解释

1.向量点乘公式推导和几何解释

01.向量点乘(dot product)是其各个分量乘积的和,公式:

用连加号写:

向量a=(a1*e1, a2*e2,a3*e3........an*en)其中e1,e2,e3.......en为正交规范基(俩俩正交,每个向量单位为1)

向量b=(b1*e1, b2*e2,b3*e3........bn*en)其中e1,e2,e3.......en为正交规范基(俩俩正交,每个向量单位为1)

则向量a.b有下面的公式

02.几何解释:

点乘的结果是一个标量,等于向量大小与夹角的cos值的乘积。

a•b = |a||b|cosθ

如果a和b都是单位向量,那么点乘的结果就是其夹角的cos值。

a•b = cosθ

03.推导过程:

假设a和b都是二维向量,θ1是a与x轴的夹角,θ2是b与x轴的夹角,向量a与b的夹角θ等于θ1 - θ2.

a•b = ax*bx + ay*by 

=  (|a|*sinθ1) * (|b| * sinθ2) +   (|a| * cosθ1) * (|b| * cosθ2)

= |a||b|(sinθ1*sinθ2 + cosθ1*cosθ2)

=|a||b|(cos(θ1-θ2))

= |a||b|cosθ

2.点乘交换率和分配率的推导

01.交换率

02.分配率

注:更多内容参见:<3D math primer for graphics and game development  second edition>点击打开链接

转载:https://blog.csdn.net/zsq306650083/article/details/8772128

 

 

 

 

 

 

 

 

 

 

### 向量的概念 向量是一种用于衡量两个向量之间关系的操作,其结果是一个标量。它不仅能够表示两个向量的“相似”程度,还可以通过的结果来计算两个向量之间的夹角或其中一个向量在另一个向量上的投影长度[^2]。 #### 的定义 给定两个向量 \( \mathbf{a} = [a_1, a_2, ..., a_n] \) 和 \( \mathbf{b} = [b_1, b_2, ..., b_n] \),它们的可以表示为: \[ \mathbf{a} \cdot \mathbf{b} = a_1b_1 + a_2b_2 + ... + a_nb_n \] 这也可以写作连加形式: \[ \mathbf{a} \cdot \mathbf{b} = \sum_{i=1}^{n} a_i b_i \][^4] #### 几何意义 从几何角度来看,的结果可以通过以下公式表达: \[ \mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos{\theta} \] 其中,\( |\mathbf{a}| \) 是向量 \( \mathbf{a} \) 的模长,\( |\mathbf{b}| \) 是向量 \( \mathbf{b} \) 的模长,而 \( \theta \) 则是这两个向量之间的夹角。如果 \( \mathbf{a} \) 和 \( \mathbf{b} \) 都是单位向量,则的结果即为两者夹角的余弦值[^3]。 当结果大于零时,说明两向量的角度小于90度;等于零时表示两向量正交(垂直);小于零则表明角度超过90度[^1]。 ### 向量的实现方法 以下是基于 Python 编程语言的一个简单实现例子,展示如何手动完成向量运算: ```python def vector_dot_product(a, b): """ 计算两个向量。 参数: a -- 第一向量列表 (list of float/int) b -- 第二向量列表 (list of float/int) 返回: dot_product -- 结果 (float) """ if len(a) != len(b): raise ValueError("输入的两个向量维度不一致") dot_product = sum(ai * bi for ai, bi in zip(a, b)) return dot_product # 测试案例 vector_a = [1, 2, 3] vector_b = [4, 5, 6] result = vector_dot_product(vector_a, vector_b) print(f"向量 {vector_a} 和 {vector_b} 的结果为: {result}") ``` 上述函数 `vector_dot_product` 接受两个相同长度的向量作为参数,并返回它们的结果。此代码片段展示了基本逻辑操作——逐位相乘并求和的过程。 ### 总结 综上所述,向量不仅是代数意义上的分量积之和,还具有深刻的几何含义,可用于分析空间中的方向性和距离等问题。无论是理论研究还是实际应用开发中,掌握这一概念及其具体算法都是非常重要的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值