特殊级数的和

1.设f(x)是周期为2π的周期函数,它在 [ − π , π ) [-π,π) [π,π)上的表达式为 f ( x ) = ∣ x ∣ f(x)=|x| f(x)=x,则将f(x)展开成傅里叶级数得

f ( x ) = π 2 − 4 π ∑ k = 1 ∞ 1 ( 2 k − 1 ) 2 c o s ( 2 k − 1 ) x f(x)= {\pi\over2}-{4\over\pi}\sum_{k=1}^\infty{1\over{(2k-1)^2}}cos(2k-1)x f(x)=2ππ4k=1(2k1)21cos(2k1)x
( − ∞ &lt; x &lt; + ∞ ) (-\infty&lt;x&lt;+\infty) (<x<+)

令x=0得 ∑ k = 1 ∞ 1 ( 2 k − 1 ) 2 = π 2 8 \sum_{k=1}^\infty{1\over{(2k-1)^2}}={\pi^2\over8} k=1(2k1)21=8π2

即 S 2 = 1 + 1 3 2 + 1 5 2 + . . . = π 2 8 即S_2=1+{1\over3^2}+{1\over5^2}+...={\pi^2\over8} S2=1+321+521+...=8π2

设 S 1 = 1 + 1 2 2 + 1 3 2 + . . . , 设S_1=1+{1\over2^2}+{1\over3^2}+..., S1=1+221+321+...,

S 3 = 1 2 2 + 1 4 2 + 1 6 2 . . . , S_3={1\over2^2}+{1\over4^2}+{1\over6^2}..., S3=221+421+621...,

S 4 = 1 − 1 2 2 + 1 3 2 − 1 4 2 + . . . . S_4=1-{1\over2^2}+{1\over3^2}-{1\over4^2}+.... S4=1221+321421+....

因为 S 3 = S 1 4 = ( S 2 + S 3 ) 4 , S_3={S_1\over4}={{(S_2+S_3)}\over4}, S3=4S1=4(S2+S3),
所以 S 3 = S 2 3 = π 2 24 , S_3={S_2\over3}={\pi^2\over24}, S3=3S2=24π2,
S 1 = S 2 + S 3 = π 2 6 , S_1=S_2+S_3={\pi^2\over6}, S1=S2+S3=6π2,
S 4 = S 1 − 2 S 3 = π 2 12 . S_4=S_1-2S_3={\pi^2\over12}. S4=S12S3=12π2.

又由 2 ∑ k = 1 ∞ 1 [ ( 2 k − 1 ) π 2 ] 2 = 8 π 2 S 2 = 1 2\sum_{k=1}^\infty{1\over{[{(2k-1)\pi\over2}]^2}}={8\over\pi^2}S_2=1 2k=1[2(2k1)π]21=π28S2=1

± ( 2 k − 1 ) π 2 恰 为 c o s x = 0 的 零 点 , 即 \pm{(2k-1)\pi\over2}恰为cosx=0的零点,即 ±2(2k1)πcosx=0
{}

c o s x = 0 的 所 有 零 点 的 倒 数 的 平 方 和 为 1. cosx=0 的所有零点的倒数的平方和为1. cosx=01.

{}
2.设f(x)在 [ − π , π ) [-π,π) [π,π)上的表达式为 f ( x ) = { 1 ,    x ∈ [ − π , 0 ) 0 ,    x ∈ [ 0 , π ) f(x)=\left\{ \begin{aligned} &amp; 1 , \ \ x\in[-\pi,0) \\ &amp; 0,\ \ x\in[0,\pi) \\ \end{aligned} \right. f(x)={1,  x[π,0)0,  x[0,π)
则将f(x)展开成傅里叶级数得

f ( x ) = 1 2 − 2 π ( s i n x + s i n 3 x 3 + s i n 5 x 5 + . . . ) f(x)={1\over2}-{2\over\pi}(sinx+{sin3x\over3}+{sin5x\over5}+...) f(x)=21π2(sinx+3sin3x+5sin5x+...)

x ∈ [ − π , π ) x\in[-\pi,\pi) x[π,π)

x = π 2 x={\pi\over2} x=2π



1 − 1 3 + 1 5 − 1 7 + . . . = π 4 1-{1\over3}+{1\over5}-{1\over7}+...={\pi\over4} 131+5171+...=4π

3.

1 − 1 2 + 1 3 − 1 4 + 1 5 − . . . = l n 2 1-{1\over2}+{1\over3}-{1\over4}+{1\over5}-...=ln2 121+3141+51...=ln2

{}

证 明 : 设 S 1 = 1 + 1 2 + 1 3 + 1 4 + . . . 1 2 n 证明:设S_1=1+{1\over2}+{1\over3}+{1\over4}+...{1\over2n} S1=1+21+31+41+...2n1
{}

S 2 = 1 2 + 1 4 + 1 6 + . . . + 1 2 n S_2={1\over2}+{1\over4}+{1\over6}+...+{1\over2n} S2=21+41+61+...+2n1
{}

1 − 1 2 + 1 3 − 1 4 + 1 5 − . . . + 1 2 n − 1 − 1 2 n = S 1 − 2 S 2 1-{1\over2}+{1\over3}-{1\over4}+{1\over5}-...+{1\over2n-1}-{1\over2n}=S_1-2S_2 121+3141+51...+2n112n1=S12S2
{}
{}
= 1 n + 1 + 1 n + 2 + . . . 1 2 n = 1 n ( 1 1 + 1 n + 1 1 + 2 n + . . . + 1 1 + n n ) = ∫ 0 1 1 1 + x ={1\over n+1}+{1\over n+2}+...{1\over 2n}={1\over n}({1\over1+{1\over n}}+{1\over1+{2\over n}}+...+{1\over1+{n\over n}})=\int_0^1{1\over1+x} =n+11+n+21+...2n1=n1(1+n11+1+n21+...+1+nn1)=011+x1

{}
= l n ( 1 + x ) ∣ 0 1 = l n 2     ( n → + ∞ ) =ln(1+x)|_0^1=ln2\ \ \ (n\rightarrow+\infty) =ln(1+x)01=ln2   (n+)
{}
1 − 1 2 + 1 3 − 1 4 + 1 5 − . . . − 1 2 n + 1 2 n + 1 = l n 2 + 0 = l n 2     ( n → + ∞ ) 1-{1\over2}+{1\over3}-{1\over4}+{1\over5}-...-{1\over2n}+ {1\over2n+1}=ln2+0=ln2\ \ \ (n\rightarrow+\infty) 121+3141+51...2n1+2n+11=ln2+0=ln2   (n+)

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值