高等数学(一)

(高等数学一)

一.集合

1.1集合的定义

给出参考:集合(数学概念)_百度百科 (baidu.com)

1.2集合的运算

定义集合的交运算、并运算、差运算。

给出参考:集合的基本运算 - 知乎 (zhihu.com)

1.3集合的度量–集合的基数

集合的基数:集合中元素的个数称为集合的基数(又称为势),记作|A|
为了比较两个无穷集合的大小,引入了势的概念。
	集合A到集合B存在双射,称A与B等势,记作A≈B。特别的称,与自然数集N等势的集合为可列集。
常见等势与不等势关系:
1.Z≈N
2.N≈Q
3.(0,1)≈R
4.N!≈R
5.R≈无理数集

给出参考: 离散数学复习–集合的势证明_毛线岛民的博客-CSDN博客

给出参考:几个有关集合势的“简单”证明 - 科学空间|Scientific Spaces

1.4定义区间与邻域

1.区间的本质是一个有范围的集合
	在数学里,区间通常是指这样的一类实数集合:如果x和y是两个在集合里的数,那么,任何x和y之间的数也属于该集合。例如,由符合0 ≤ x ≤ 1的实数所构成的集合,便是一个区间,它包含了0、1,还有0和1之间的全体实数。其他例子包括:实数集,负实数组成的集合等。

在这里插入图片描述

1.5如何描述“连续性”

如何描述实数集是“连续的”?
1.在实数域中,任意一个单调有界序列必有极限;
2.确界存在定理;
	非空有上界的实数集必有上确界,非空有下界的实数集必有下确界。

1.6上界、下界、上确界、下确界

在这里插入图片描述

1.7集合间关系—>映射—>函数

设A、B是两个非空集合,如果存在一个法则f,使得对于A中的每个元素a,按照法则f,在B中有唯一确定的元素b与之对应,则称f为从A到B的映射,记作
				f:A->B
其中,b称为元素a在映射f下的象,B为象集.

由于映射属于基本概念,不是很复杂,随意直接给出参考:每个人都看得懂的映射(单射、满射、双射) - 知乎 (zhihu.com)

函数的本质就是集合到集合的映射(或称为法则)f。
定义反函数:如果f是双射,那么f可逆,记作f^(-1)
数学分析将基本初等函数归为六类:幂函数、指数函数、对数函数、三角函数、反三角函数、常数函数
基本初等函数经过有限次四则运算和复合所得到的函数称为初等函数。

给出参考:基本初等函数_百度百科 (baidu.com)

定义函数的奇偶性:
设有集合X,
奇函数 f(x)=-f(-x)
偶函数 f(x)=f(-x)

二.数列

2.1数列的基本说明

数列的本质是有序的数的集合。
数列的描述方法通常包括:通项公式法和直接描述法

定义数列的极限:

在这里插入图片描述

2.2数列极限的性质

唯一性:收敛数列的极限是唯一的
有界性:收敛序列是有界的

子 数 列 收 敛 : 若 a n − > a ( n − > ∞ ) , 则 a n 的 任 意 一 个 子 序 列 a n k − > a ( n − > ∞ ) 子数列收敛:若a_n->a(n->∞),则a_n的任意一个子序列a_{n_k}->a(n->∞) an>a(n>),anank>a(n>)

给出参考:第三讲 数列极限及其性质 - 知乎 (zhihu.com)
保 序 性 : 若 a n − > a , b n − > b ( n − > ∞ ) , 若 存 在 N 0 使 得 只 要 n > N 0 都 有 a n ≥ b n , 则 a ≥ b 保序性:若a_n->a,b_n->b(n->∞),\\ 若存在N_0使得只要n>N_0都有a_n≥b_n,则a≥b an>a,bn>b(n>)N0使n>N0anbnab
给出参考:数列极限的保号性及保序性证明 - 知乎 (zhihu.com)
( 单 调 有 界 收 敛 定 理 ) 如 果 一 个 数 列 a n 单 调 递 增 有 上 界 ( 或 单 调 递 减 有 下 界 ) , 则 a n 收 敛 。 (单调有界收敛定理) 如果一个数列 a_n 单调递增有上界(或单调递减有下界),则 a_n收敛。 anan
在这里插入图片描述

2.3夹逼收敛原理

在这里插入图片描述

给出参考:夹逼定理与应用举例 - 知乎 (zhihu.com)

2.4重要极限

( 1 ) lim ⁡ n − > ∞ sin ⁡ x x = 1 ( 2 ) 规 定 x n = ( 1 + 1 n ) n , y n = ( 1 + 1 n ) n + 1 有 lim ⁡ n − > ∞ x n = lim ⁡ n − > ∞ y n = e 其 中 e = 2.7182... ( 3 ) 定 义 欧 拉 常 量 c = lim ⁡ n − > ∞ ( 1 + 1 2 + . . . + 1 n − ln ⁡ n ) = 0.577216 (1)\lim_{n->∞}\frac{\sin{x}}{x}=1\\ (2)规定x_n=(1+ \frac{ 1}{n })^n,y_n=(1+ \frac{ 1}{n })^{n+1}有\lim_{n->∞}x_n=\lim_{n->∞}y_n=e\\ 其中e=2.7182...\\ (3)定义欧拉常量c=\lim_{n->∞}(1+\frac{1}{2}+...+\frac{1}{n}-\ln{n})=0.577216 1n>limxsinx=12xn=(1+n1)n,yn=(1+n1)n+1n>limxn=n>limyn=ee=2.7182...3c=n>lim(1+21+...+n1lnn)=0.577216

给出参考:两个重要极限的证明 - 豆丁网 (docin.com)

2.5定义无穷小量、无穷大

无穷小量和无穷大量本质上是两种特殊的数列

定 义 无 穷 小 量 : 设 { x n } 是 一 个 数 列 , 若 { x n } − > 0 ( n − > ∞ ) , 则 称 序 列 { x n } 为 无 穷 小 量 , 记 作 x n = o ( 1 ) ( n − > ∞ ) 定义无穷小量:设\{x_n\}是一个数列,若\{x_n\}->0(n->∞),则称序列\{x_n\}为无穷小量,记作x_n=o(1)(n->∞) {xn}{xn}>0(n>){xn},xn=o(1)(n>)

无穷小量的性质:

( 1 ) 若 { x n } 是 无 穷 小 量 的 充 要 条 件 是 ∣ 若 { x n } ∣ 是 无 穷 小 量 ( 2 ) 若 { x n } 是 无 穷 小 量 , M 是 一 个 常 数 , 则 若 { M x n } 是 无 穷 小 量 ( 3 ) lim ⁡ n − > ∞ x n = l 的 充 要 条 件 是 { x n − l } 是 无 穷 小 量 。 ( 4 ) 序 列 { a n n ! } 是 无 穷 小 量 (1)若\{x_n\}是无穷小量的充要条件是{|若\{x_n\}|}是无穷小量\\ (2)若\{x_n\}是无穷小量,M是一个常数,则若\{Mx_n\}是无穷小量\\ (3)\lim_{n->∞}x_n=l的充要条件是\{x_n-l\}是无穷小量。\\ (4)序列\{\frac{a^n}{n!}\}是无穷小量 1{xn}{xn}2{xn}M{Mxn}3n>limxn=l{xnl}4{n!an}

定义无穷大量:

定 义 无 穷 大 量 : 设 { x n } 是 一 个 数 列 , 若 任 意 M > 0 , 存 在 N , 当 n > N , 有 ∣ x n ∣ > M , 则 称 序 列 { x n } 为 无 穷 大 量 , 记 作 x n − > ∞ ( n − > ∞ ) 定义无穷大量:设\{x_n\}是一个数列,若任意M>0,存在N,当n>N,有\\ |x_n|>M,则称序列\{x_n\}为无穷大量,记作x_n->∞(n->∞) {xn}M>0,Nn>Nxn>M{xn},xn>(n>)

无穷大量与无穷小量之间的关系:

{ x n } 是 无 穷 小 量 的 充 要 条 件 为 { 1 x n } 是 无 穷 大 量 \{x_n\}是无穷小量的充要条件为\{\frac{1}{x_n}\}是无穷大量 {xn}{xn1}

在这里插入图片描述

通俗的语言来说:
1.A=o(B)是指:在取极限的时候A相对于B是可以忽略的小量
2.A=O(B)是指:在取极限的时候,B可以控制住A

给出参考:数学分析里的大o和小o怎么理解? - 知乎 (zhihu.com)
给 出 阶 的 大 小 关 系 : ln ⁡ n < n a 1 < n a 2 < b n < n ! < n n 其 中 n − > ∞ ( a 2 > a 1 > 0 , b > 1 ) 给出阶的大小关系:\\ \ln{n}<n^{a_1}<n^{a_2}<b^n<n!<n^n其中n->∞(a_2>a_1>0,b>1) :lnn<na1<na2<bn<n!<nnn>(a2>a1>0,b>1)

2.6闭区间套定理

波尔扎诺-威尔斯特拉斯定理:任何一个有界的序列,必定存在收敛的子列。

闭区间套定理的本质是实数连续性的一种描述,几何意义是,有一列闭线段(两个端点也属于此线段),后者被包含在前者之中,并且由这些闭线段的长构成的数列以О为极限,则这一列闭线段存在唯一一个公共点.

定 义 闭 区 间 套 , 设 有 无 穷 多 个 闭 区 间 , 满 足 以 下 两 个 条 件 : ( 1 ) [ a n + 1 , b n + 1 ] ⊂ [ a n , b n ] ( 即 后 一 个 闭 区 间 都 在 前 一 个 闭 区 间 之 内 ) ; ( 2 ) lim ⁡ n − > ∞ ( b n − a n ) = 0 ( 即 只 要 n 充 分 大 , 闭 区 间 的 长 度 与 0 就 可 以 接 近 到 预 先 给 定 的 程 度 ) , 那 么 将 这 一 无 穷 多 个 闭 区 间 所 构 成 的 集 合 称 为 一 个 闭 区 间 套 , 简 称 区 间 套 。 定义闭区间套,设有无穷多个闭区间,满足以下两个条件:\\ (1)[a_n+1,b_n+1]⊂[a_n,b_n](即后一个闭区间都在前一个闭区间之内);\\ (2)\lim_{n->∞}(b_n-a_n)=0(即只要n充分大,闭区间的长度与0就可以接近到预先给定的程度),\\ 那么将这一无穷多个闭区间所构成的集合称为一个闭区间套,简称区间套。 (1)[an+1bn+1][anbn](2)n>lim(bnan)=0n0

在这里插入图片描述

给出参考:闭区间套定理_百度百科 (baidu.com)

定义聚点:聚点是拓扑空间的基本概念之一。设A为拓扑空间X的子集,a∈X,若a的任意邻域都含有异于a的A中的点,则称a是A的聚点。集合A的所有聚点的集合称为A的导集.(聚点本质是边界点或内点)(目前可以理解为,就是极限点)

在这里插入图片描述

聚点性质:
1.(维尔斯特拉斯聚点定理)任何有界的无穷数集,都有聚点存在.
2.(波尔察诺定理) 有界数列有收敛的子数列。

[给出参考:聚点_百度百科 (baidu.co(https://baike.baidu.com/item/聚点/90919#:~:text=聚点是 拓扑空间 的基本概念之一。 设A为拓扑空间X的 子集 ,a∈X,若a的任意 邻域 都含有异于a的A中的点,则称a是A的聚点。,集合A的所有聚点的集合称为A的 导集 ,聚点和导集等概念是 康托尔 (Cantor%2CG. (F.P.))

三.函数与函数极限

3.1函数极限

在数列的极限中,自变量n只有一种变化方式n->∞
但是对于函数y=f(x)而言,自变量x的变化是连续的,并且有多种可能性:
	1.x从一点a的右侧或者左侧趋向于a,着各种叫做单侧极限。
	2.x从一点a的两侧趋向于a,记作x->a。
	3.x无限制增大,记作x->+∞,或者x无限制减小,记作x->-∞
	4.x的绝对值|x|,无限增大,记作x->∞

3.2单侧极限与双侧极限

	在说明单侧极限之前,先说一点个人的理解,如果将数列看作是离散的自变量的话,数列的极限可以看作是离散自变量的极限,函数相当于是在当前自变量极限的基础上,定义出了映射后函数值的极限。

在这里插入图片描述

在这里插入图片描述

3.3函数极限的基本性质

1.极限存在等价于左右极限存在且相等。
2.极限值具有唯一性。
3.极限运算可以和函数运算交换顺序.
4.极限具有保号性。
5.函数极限的夹逼定理。

复合函数的极限运算法则:

在这里插入图片描述

复合函数的极限运算法则证明_可爱见见-CSDN博客_复合函数的极限运算法则

极限的保号性:
设 f ( x ) , g ( x ) 是 定 义 在 一 点 a 的 空 心 邻 域 内 的 函 数 , 且 满 足 f ( x ) ≥ g ( x ) , 若 当 x − > a 时 , f ( x ) , g ( x ) 的 极 限 均 存 在 , 则 有 lim ⁡ x − > a f ( x ) ≥ lim ⁡ x − > a g ( x ) 设f(x),g(x)是定义在一点a的空心邻域内的函数,且满足f(x)≥g(x),若当x->a时,f(x),g(x)的极限均\\存在,则有\lim_{x->a}f(x)≥\lim_{x->a}g(x) f(x),g(x)af(x)g(x)x>af(x),g(x)x>alimf(x)x>alimg(x)
函数的夹逼定理:
设 f ( x ) , g ( x ) 以 及 h ( x ) 是 定 义 在 一 点 a 的 空 心 邻 域 内 的 函 数 , 且 满 足 h ( x ) ≤ f ( x ) ≤ g ( x ) , 假 如 lim ⁡ x − > a h ( x ) = lim ⁡ x − > a g ( x ) = l 则 lim ⁡ x − > a f ( x ) = l 设f(x),g(x)以及h(x)是定义在一点a的空心邻域内的函数,且满足\\h(x)≤f(x)≤g(x),假如\lim_{x->a}h(x)=\lim_{x->a}g(x)=l\\则\lim_{x->a}f(x)=l f(x),g(x)h(x)ah(x)f(x)g(x)x>alimh(x)=x>alimg(x)=lx>alimf(x)=l

3.4由函数的极限可以定义函数连续

在这里插入图片描述

3.5连续函数的性质

1.连续函数的四则运算保持连续性
2.对连续函数进行函数复合保持连续性
	设f:(a,b)->(c,d)在x0处连续,g:(c,d)->R在y=f(x)处连续,则复合函数g.f在x处连续。
3.反函数连续
	设f:(a,b)->(c,d)是一一映射,并且作为函数是严格单调的,则f是(a,b)上的连续函数,其反函数是(c,d)上的连续函数。
4.初等函数连续

给出证明方法参考:连续函数_百度百科 (baidu.com)

3.6函数的无穷大与无穷小

在2.5节的基础上,给出函数下的定义:
3.6.1定义无穷大量和无穷小量

设 y = f ( x ) 在 U 0 ( x 0 , δ 0 ) 上 有 定 义 , 若 lim ⁡ x − > x 0 f ( x ) = 0 , 则 称 f ( x ) 为 x − > x 0 的 一 个 无 穷 小 量 , 若 lim ⁡ x − > x 0 f ( x ) = ∞ , 则 称 f ( x ) 为 x − > x 0 的 一 个 无 穷 大 量 。 设y=f(x)在U_0(x_0,δ_0)上有定义,若\lim_{x->x_0}f(x)=0,则称f(x)为x->x_0的\\一个无穷小量,若\lim_{x->x_0}f(x)=∞,则称f(x)为x->x_0的一个无穷大量。 y=f(x)U0(x0,δ0)x>x0limf(x)=0f(x)x>x0x>x0limf(x)=f(x)x>x0

3.6.2定义无穷大阶和无穷小阶

在这里插入图片描述

3.6.3常用等价无穷小

在这里插入图片描述

3.7间断点与分类

在这里插入图片描述

3.8介质定理与最值定理

( 1 ) 介 质 定 理 : 设 f : [ a , b ] − > R 是 [ a , b ] 上 的 连 续 函 数 , 且 f ( a ) ≠ f ( b ) , 则 对 于 任 何 一 个 值 η : f ( a ) < η < f ( b ) 或 者 f ( a ) > η > f ( b ) , 存 在 一 点 ξ ∈ ( a , b ) 使 得 , f ( ξ ) = η . ( 2 ) 最 值 定 理 : 设 f : [ a , b ] − > R 是 [ a , b ] 上 的 连 续 函 数 , 则 它 的 函 数 值 有 最 大 值 和 最 小 值 ( 3 ) 闭 区 间 上 的 任 何 连 续 函 数 是 有 界 函 数 , 即 设 f : [ a , b ] − > R 是 [ a , b ] 上 的 连 续 函 数 , 则 存 在 常 数 M 、 N 使 得 , M ≤ f ( x ) ≤ M , 对 于 任 意 x ∈ [ a , b ] (1)介质定理:设f:[a,b]->R是[a,b]上的连续函数,且f(a)≠f(b),则对于任何一个值\\η:f(a)<η<f(b)或者f(a)>η>f(b),存在一点ξ∈(a,b)使得,f(ξ)=η.\\(2)最值定理:设f:[a,b]->R是[a,b]上的连续函数,则它的函数值有最大值和最小值\\(3)闭区间上的任何连续函数是有界函数,即设f:[a,b]->R是[a,b]上的连续函数,则 \\存在常数M、N使得,M≤f(x)≤M,对于任意x∈[a,b] 1f:[a,b]>R[a,b]f(a)=f(b)η:f(a)<η<f(b)f(a)>η>f(b),ξ(a,b)使f(ξ)=η.2f:[a,b]>R[a,b]3f:[a,b]>R[a,b]MN使Mf(x)M,x[a,b]

四.导数

给出常用导数公式

在这里插入图片描述

4.1导数定义

1.导数是函数的局部性质
2.导数是由函数、极限两个基本概念进行定义的
3.导数(Derivative),也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。
4.可导则必须要求函数极限存在。
5.是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。
6.可导的函数一定连续;不连续的函数一定不可导。
7.如果函数y=f(x)在开区间内每一点都可导,就称函数f(x)在区间内可导。这时函数y=f(x)对于区间内的每一个确定的x值,都对应着一个确定的导数值,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y'、f'(x)、dy/dx或df(x)/dx

在这里插入图片描述

4.2函数四则运算后的导数

在这里插入图片描述

4.3反函数与反函数求导法则

4.3.1反函数的定义

在这里插入图片描述

若一函数有反函数,此函数便称为可逆的(invertible)。
4.3.2反函数的求导

在这里插入图片描述

4.4简单复合函数的求导法则与链式法则

在这里插入图片描述

给出定理证明:简单复合函数的求导法则 - 豆丁网 (docin.com)

给出参考:复合函数求导(链式法则) - 知乎 (zhihu.com)

给出图示对于复合函数的理解:

在这里插入图片描述

4.5隐式函数的求导法则

	前面所遇到的函数都是显示表达,但是很多问题中,得到的只是变量x和y所满足的方程,如tanx+tany=xy。虽然我们无法解出这样函数的显示表达,但是我们仍然可以直接将y看作关于x的函数y(x),方程两边都对x求导,就可以得到y关于x的导数。(本质是采用复合函数求导)
	
	隐函数的定义:如果方程F(x,y)=0能确定y是x的函数,那么称这种方式表示的函数是隐函数。而函数就是指:在某一变化过程中,两个变量x、y,对于某一范围内的x的每一个值,y都有确定的值和它对应,y就是x的函数。这种关系一般用y=f(x)即显函数来表示。F(x,y)=0即隐函数是相对于显函数来说的。
	
	隐函数与显示函数的区别:隐函数是由隐式方程所隐含定义的函数。设F(x,y)是某个定义域上的函数。如果存在定义域上的子集D,使得对每个x属于D,存在相应的y满足F(x,y)=0,则称方程确定了一个隐函数。记为y=y(x)。 显函数是用y=f(x)来表示的函数,显函数是相对于隐函数来说的。
	
【计算总结】常用的隐函数求导的方法
对于一个已经确定存在且可导的情况下,我们可以用复合函数求导的链式法则来进行求导。在方程左右两边都对x进行求导,由于y其实是x的一个函数,所以可以直接得到带有 y' 的一个方程,然后化简得到 y' 的表达式。 
隐函数导数的求解一般可以采用以下方法:
方法①:先把隐函数转化成显函数,再利用显函数求导的方法求导;
方法②:隐函数左右两边对x求导(但要注意把y看作x的函数);
方法③:利用一阶微分形式不变的性质分别对x和y求导,再通过移项求得的值;
方法④:把n元隐函数看作(n+1)元函数,通过多元函数的偏导数的商求得n元隐函数的导数。

给出参考:【微积分的本质|笔记】隐函数求导的意义与理解_kodoshinichi的博客-CSDN博客_隐函数求导的意义

给出参考:高等数学:隐函数如何求导-百度经验 (baidu.com)

给出参考:隐函数_百度百科 (baidu.com)

4.7参数式函数的求导法则

在这里插入图片描述

给出参考:高等数学:参数方程如何求导-百度经验 (baidu.com)

4.8不定式与洛必达法则

4.8.1不定式

在这里插入图片描述

4.8.2洛必达法则求解0/0、∞/∞型不定式

假 设 函 数 f ( x ) 和 g ( x ) 在 某 一 点 a 的 空 心 邻 域 U 0 ( a , δ ) 上 可 导 , 且 满 足 : lim ⁡ x − > a f ( x ) = lim ⁡ x − > a g ( x ) = 0 g ′ ( x ) ≠ 0 , 对 于 任 意 x ∈ U 0 ( a , δ ) 均 成 立 lim ⁡ x − > a f ′ ( x ) g ′ ( x ) = l ( l 为 有 限 数 或 ∞ ) 则 有 lim ⁡ x − > a f ( x ) g ( x ) = lim ⁡ x − > a f ′ ( x ) g ′ ( x ) = l a 可 以 取 ∞ 。 假设函数f(x)和g(x)在某一点a的空心邻域U_0(a,δ)上可导,且满足:\\\lim_{x->a}f(x)=\lim_{x->a}g(x)=0\\g'(x)≠0,对于任意x∈U_0(a,δ)均成立\\\lim_{x->a} \frac{f'(x)}{g'(x)}=l(l为有限数或∞)\\则有\lim_{x->a} \frac{f(x)}{g(x)}=\lim_{x->a} \frac{f'(x)}{g'(x)}=l\\a可以取∞。 f(x)g(x)aU0(a,δ):x>alimf(x)=x>alimg(x)=0g(x)=0xU0(a,δ)x>alimg(x)f(x)=l(l)x>alimg(x)f(x)=x>alimg(x)f(x)=la

4.8.3洛必达法则的限制条件
并不是所有不定式都可以用洛必达法则,使用洛必达法则的时候,每一步都必须验证极限是否存在。

如 lim ⁡ x − > ∞ x + sin ⁡ x x , 他 的 极 限 lim ⁡ x − > a f ′ ( x ) g ′ ( x ) 不 存 在 , 则 该 不 定 式 不 能 使 用 洛 必 达 法 则 。 如\lim_{x->∞} \frac{x+\sin{x}}{x},他的极限\lim_{x->a} \frac{f'(x)}{g'(x)}不存在,则\\该不定式不能使用洛必达法则。 x>limxx+sinxx>alimg(x)f(x)使

  • 2
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值