目录
一、定积分
1.1 什么是定积分?
定积分是微积分中的一个重要概念,用于求解函数在某个区间上的累积效应或面积。
1.1.1 定积分的定义
定积分 表示函数 f(x)在区间 [a,b]上的累积效应或面积。可通过一下几个步骤来理解:
- 分割区间:
将区间 [a,b]分割成 n 个小区间,每个小区间的长度为 Δxi,其中
,且
。
-
取样本点:
在每个小区间
内取一个样本点
。
-
构造黎曼和:
构造黎曼和
,表示函数 f(x) 在区间 [a,b]上的近似累积效应或面积。
-
取极限:
当分割的区间数 n 趋向于无穷大,且每个小区间的长度 Δxi趋向于零时,黎曼和的极限即为定积分:=
1.1.2 定积分的几何意义
定积分的几何意义是函数 f(x) 在区间 [a,b]上的曲线下面积。具体来说:
-
如果 f(x)≥0,则定积分表示曲线下方的面积。
-
如果 f(x)≤0,则定积分表示曲线上方的面积的负值。
1.2 定积分一般性质
- 线性性质:
,其中c和d是常数。
- 区间可加性:
,其中
。
- 积分上下限交换:
- 定积分中值定理:
设函数,则存在
,使
- 积分中值定理的证明:
小提示:
1.3 定积分的基本定理
- 定理1:设函数
,
,则
- 定理2:牛顿-莱布尼茨公式
,其中,F(x)是 f(x)的一个原函数,即 F′(x)=f(x)。
1.4 定积分换元法
-
选择合适的变量替换:
选择一个合适的变量替换 t=g(x),使得积分变得更简单,并求反函数: -
求导数:
对 x 的导数 -
替换积分变量:
将原积分中的 x 替换为 t,并将 dx 替换为 -
确定新的积分上下限:
将原积分的上下限 a 和 b 替换为新的上下限 t 的值。即 t 的下限为 t1,上限为 t2。 -
求解新积分: 求解新的定积分
例:求
步骤1:令,则
步骤2:对x求导数
步骤3:确定t的上下限
下限:
上限:
步骤4:求解新的定积分
二、多元函数
2.1 二元极限
2.1.1二元极限的定义
设函数 f(x,y) 在点 (a,b) 的某个去心邻域内有定义。如果对于任意给定的正数 ϵ,总存在正数 δ,使得当 时,总有:∣f(x,y)−L∣<ϵ 则称 L 为函数 f(x,y)在点 (a,b)处的极限,记作:
2.1.2二元极限的几何意义
当点 (x,y)从任意方式趋近于点 (a,b) 时,函数 f(x,y) 的值趋近于 L。换句话说,函数图像在二维平面的点 (a,b)附近趋近于一个三维立体平面上的点 (a,b,L)。可将(a,b)想象为(a,b,L)投影在二维平面的点。
如果 (x,y)从不同方式趋近于点 (a,b),函数 f(x,y) 的值不相等,则表示 f(x,y) 不存在。
例子:,在点 (0,0)处的极限
解:
1. 沿 x轴趋近:
当 y=0 时, 。
因此:
2. 沿 y轴趋近:
当 x=0时, 。
因此:
3. 沿任意直线 y=kx趋近:
当 y=kx 时, 。
因此:
4. 沿抛物线 趋近:
当 时,
。
因此:
由于函数在点 (0,0)的任意方向上的极限都为 0,
因此:
2.2 偏导数
偏导数是多元函数求导的一种形式,表示在多个自变量中,当其中一个自变量改变而其他自变量保持不变时函数值的变化率。
这实质上是将其他自变量视为常数,然后按照单变量函数求导的方法进行运算。
2.2.1 偏导数的定义

2.2.2 偏导数的计算方法
对于二元函数z=f(x,y),求z对x的偏导数时,将y看作常量,对x求导;
求z对y的偏导数时,将x看作常量,对y求导。
例子:
求的偏导数
解:
1.对x求偏导数:
2.对y求偏导数:
2.3 全微分
2.3.1 全微分的定义
如果函数z=f(x, y)在点(x, y)处的全增量
可以表示为,其中A、B不依赖于Δx, Δy,仅与x, y有关,ρ趋近于0(ρ=√[(Δx)²+(Δy)²]),此时称函数z=f(x, y)在点(x, y)处可微分,AΔx+BΔy称为函数z=f(x, y)在点
(x, y)处的全微分,记为dz即dz=AΔx +BΔy。
2.3.2 可微的必要条件条件
若z=f(x,y)在(x,y)点处可微,则偏导数与
存在,并且
或
2.3.3 可微的充分条件
z=f(x,y)在(x,y)的某个邻域内有连续的偏导数和
则在(x,y)处可微,或
例:求在(1,2)处的全微分
解:
分别求出x和y的偏导数:
求出在(1,2)处x和y的偏导数:
所以在(1,2)处的全微分:
2.3.4 近似计算
z=f(x, y)在点(x, y)处的
全增量为Δz=f(x+Δx,y+Δy)-f(x,y)
全微分为
在计算中我们通常使
所以
即:
上述公式即为近似计算公式。
2.4 梯度
梯度是一个向量,表示多元函数在某一点处的最大变化率和变化方向。
2.4.1 梯度定义
设 f(x1,x2,…,xn)是一个定义在 Rn(n维欧几里得空间) 上的多元函数,函数 f在n维向量点 a=(a1,a2,…,an)处的梯度定义为:
其中,是函数 f 在点 a 处对第 i 个自变量的偏导数。
2.4.2 梯度的性质
1. 最大变化率:梯度 ∇f(a) 的方向是函数 f在点 a 处变化率最大的方向。
2. 变化率:梯度 ∇f(a) 的大小(模)是函数 f 在点 a 处沿梯度方向的变化率。
- 沿梯度方向是是函数 f在点 a 处变化率增加最大的方向;
- 沿梯度反方向是是函数 f在点 a 处变化率减小最大的方向;
- 沿梯度垂直方向函数 f在点 a 处变化率为0。
2.4.3 梯度下降
梯度下降是一种优化算法,用于寻找多元函数的最小值。其基本思想是沿着函数的负梯度方向逐步更新参数,以减少函数值。
算法步骤
1. **初始化**:选择一个初始点 x0。
2. **迭代更新**:对于每次迭代 k,计算当前点的梯度
,并更新参数:
其中,η 是学习率(步长),控制每次更新的步幅。
3. **终止条件**:当梯度的模足够小或达到预设的迭代次数时,停止迭代。通常,终止条件可以是以下几种:
- 梯度的模足够小:
当梯度的模(或范数)小于某个阈值时,停止迭代。
说明:梯度的范数表示梯度向量的大小,即梯度向量的长度。
梯度的范数(模) ∥∇f(xk)∥是这个向量的欧几里得长度,定义为:
- 达到预设的迭代次数:当迭代次数达到预设的最大迭代次数时,停止迭代。
- 函数值变化足够小:
当函数值的变化小于某个阈值时,停止迭代。
学习率
学习率 η是一个重要的超参数,控制着每次更新的步幅。选择合适的学习率对于梯度下降算法的性能至关重要:
- 学习率过大:如果步幅过大,算法可能会“跳过”最优解,导致在最优解附近来回震荡。
- 学习率过小:可能导致算法收敛速度过慢。
例:
一个二元函数 ,使用梯度下降法寻找其最小值。
解:
1. 初始化:选择初始点。
2. 计算梯度:
∇f(x,y)=(2x,2y) 在点 (3,4) 处:∇f(3,4)=(6,8)
3. 选择学习率:设 η=0.1。
4. 更新参数:
5. 继续迭代:
在点 (2.4,3.2) 处计算梯度:
∇f(2.4,3.2)=(2⋅2.4,2⋅3.2)=(4.8,6.4)
更新参数:
继续迭代,直到满足终止条件。
2.5 二重积分
二重积分是多元微积分中的一个重要概念,用于计算二维区域上的函数积分。它通常用于计算平面区域上的面积、质量、重心等问题。二重积分的基本思想是将一个二维区域分割成无数个小区域,然后在每个小区域上计算函数值的积分。
2.5.1 二重积分的定义
设 f(x,y)f(x,y)是定义在平面区域 D 上的函数,二重积分记作:,其中 dA表示面积元素。
2.5.2 二重积分的几何意义
如果 f(x,y)是非负函数,二重积分 表示以 D 为底、以 f(x,y)为顶的曲顶柱体的体积。
2.5.3 二重积分的计算步骤
-
直角坐标系
- 极坐标系