【微积分的本质|笔记】隐函数求导的意义与理解

隐函数求导


前言

本文是在观看B站公开课《微积分的本质》时随课的记录,对内容和格式有问题的朋友欢迎评论和私信交流~


#1 隐函数和隐函数求导

  1. 隐函数的定义

隐函数是由隐式方程所隐含定义的函数。
设F(x,y)是某个定义域上的函数,如果存在定义域上的子集D,使得对每个x∈D,存在相应的y满足满足F(x,y)=0,则称该方程确定了一个隐函数。

  • 隐函数和显函数是一组相对的概念,显函数就是用y=f(x)来表示的函数。
  • 隐函数本身也是函数,故也应该要满足函数的定义。圆的方程严格来说并不是隐函数,因为作为一个函数,是不允许出现一对多的情况。

    在这里插入图片描述

通俗一点理解,隐函数就是变量受到等式制约,而使得变量之间应该具有的一种映射关系。

  • 隐函数曲线——满足某种关于变量x和y的性质,所有(x,y)点的集合。
  1. 隐函数求导

如果一定要给隐函数求导制定一个定义的话,那就是求解出方程中隐含的函数的导数。

在这里插入图片描述

【计算总结】常用的隐函数求导的方法

①隐函数→显函数,常规的函数求导

②复合函数求导法则:例如对于F(x,y) = 0这样的隐函数,两边同时对x求导,但是要把y看做是关于x的函数,使用链式法则。

③一阶微分形式不变性,等式两边同时关于x求导。<隐函数求导法则>

④把n元隐函数看成是n+!元函数,使用多元函数的偏导计算来求导。


#2 相关变化率问题

  1. 问题描述
    一个梯子倚靠在墙上,梯子长5米,梯子的顶端以1米/秒的速度下滑,试问,梯子的底端离开墙角的速度是多少?

在这里插入图片描述
2. 问题分析

梯子底端距离墙的距离,完全是由梯子顶端离地高度决定的。

  • 因为具有这样的制约关系,所以我们肯定是可以算出两端运动速度的相互关系的。
  1. 问题求解

(1)对于两端距离分别命名为x(t)和y(t),从而可以得到一个等式关系。
在这里插入图片描述
(2)求解方案列举
①隐函数→显函数

按照速度的定义,只要求解出x(t)关于时间的导数,自然就得到了底端运动的速度。

在这里插入图片描述
②1元隐函数→2元显函数

对于x(t)2+y(t)2=52这样的等式,是可以抽象成F(t) = 0的形式,只看等式左边,就是一个显函数。

可以直接对这个显函数进行求导,又根据导数的实际意义,因为这个函数的值总是不变,所以在任何位置任何时刻进行任何变化,这个函数的变化率都为0.

在这里插入图片描述
【关于等式两边求导到底在求什么呢?】

  • 对等式左边求导,其实就是在问“经过一小段时间dt,y和x都会进行一些改变,那么整个表达式的值会改变多少呢”
    ——求表达式的该变量
  • 右边为0,因为表达式始终是一个常数。只有每次经过dt,表达式始终都不变化才能满足原等式。

#3 经典的圆切线问题

  1. 问题描述

需要对于形如x2+y2=R2的圆方程进行切线方程的求解

  1. 问题求解

针对圆的方程式进行隐函数求导,使用一阶微分形式不变性。

在这里插入图片描述

  1. 意义解读
    ①对等式两边进行同时求导,意味着要求不论x和y同时进行了怎样的微小变动,因为它是一个圆,所以总的表达式的变化量应该为0。

②相当于是保证了x和y在变化时每一步都落在过圆的一条切线上。


#4 隐函数求导的应用

应用:从已有的导函数中推导出未知的导函数

从指数函数中推导出对数函数的导数。
在这里插入图片描述

  • 可以把对数函数看成是一个表达简单的隐函数
  • 根据对数和指数的定义,将对数关系转换成指数关系。
  • 再针对指数关系式进行隐函数求导,变量代换之后就可以得到lnx的导数为(1/x)。

原视频指路——

【官方双语/合集】微积分的本质 - 系列合集

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值