高等概率论 Chapter 2. Axioms of Probability

Chapter 2. Axioms of Probability

欢迎大家来我的github下载源码呀,https://github.com/Berry-Wen/statistics-note-system
σ − a l g e b r a \sigma-algebra σalgebra

  • Let Ω \Omega Ω be abstract space, that is with no special structure.

  • Let 2 Ω 2^{\Omega} 2Ω denotes all subsets of Ω \Omega Ω , including the empty set denoted by ∅ \emptyset .

With A \mathcal{A} A being a subset of 2 Ω 2^{\Omega} 2Ω , we consider the following properties:

  1. ∅ ∈ A a n d Ω ∈ A \emptyset \in \mathcal{A} \quad and \quad \Omega \in \mathcal{A} AandΩA

  2. If A ∈ A A \in \mathcal{A} AA then A C ∈ A A^C \in \mathcal{A} ACA , where A C A^C AC denotes the complement of A A A

  3. A \mathcal{A} A is closed under finite unions and finite intersections:

    • that is, if A 1 , . . . , A n A_1,...,A_n A1,...,An are all in A \mathcal{A} A , then ∪ i = 1 n A i \cup_{i=1}^{n}A_i i=1nAi and ∪ i = 1 n A i \cup_{i=1}^nA_i i=1nAi are in A \mathcal{A} A as well
    • A 1 , . . . , A n ∈ A ⇒ ∪ i = 1 n A i a n d ∩ i = 1 n A i ∈ A A_1,...,A_n \in \mathcal{A} \qquad \Rightarrow \qquad \cup_{i=1}^n A_i \quad and \quad \cap_{i=1}^n A_i \in \mathcal{A} A1,...,AnAi=1nAiandi=1nAiA
  4. A \mathcal{A} A is closed under countable unions and intersections:

    • that is, if A 1 , A 2 . . . A_1,A_2... A1,A2... is countable sequence of events in A \mathcal{A} A , then ∪ i = 1 n A i \cup_{i=1}^n A_i i=1nAi and ∩ i = 1 n A i \cap_{i=1}^n A_i i=1nAi are both also in A \mathcal{A} A

Definition 2.1

A \mathcal{A} A is an algebra if it satisfies (1),(2) and (3) above

A \mathcal{A} A is an σ − a l g e b e r a \sigma-algebera σalgebera (or a σ − f i e l d \sigma-field σfield), if is satisfies (1),(2) and (4) above

  • Under (2), (1) can replaced by either (1’): ∅ ∈ A \emptyset \in \mathcal{A} A or by (1’’): Ω ∈ A \Omega \in \mathcal{A} ΩA
  • (1)+(4) ⇒ \Rightarrow (3) hence any σ − a l g e b r a \sigma-algebra σalgebra is an a l g e b r a algebra algebra (but there are a l g e b r a algebra algebra that are not σ − a l g e b r a \sigma-algebra σalgebra)


Exercise 2.17 Suppose that Ω \Omega Ω is an infinite set (countable or not), and let A \mathcal{A} A be the family of all subsets which are either finite or have a finite complement. Show that A \mathcal{A} A is an a l g e b r a algebra algebra , but not a σ − a l g e b r a \sigma-algebra σalgebra

Solution:

Under the definition, A \mathcal{A} A is the family of subsets which are either finite or have a finite complement.

  1. ∅ \emptyset is a finite subset ⇒ ∅ ∈ A \Rightarrow \quad \emptyset \in \mathcal{A} A

  2. if A ∈ A ⇒ A A \in \mathcal{A} \Rightarrow \quad A AAA is finite or A C A^C AC is finite

    so A C ∈ A A^C \in \mathcal{A} ACA

  3. if A i ∈ A , i = 1 , 2 , . . . , n ⇒ A i A_i \in \mathcal{A}, i=1,2,...,n \quad \Rightarrow \quad A_i AiA,i=1,2,...,nAi is finite or A C A^C AC is finite

    1. if ∃ i 0 \quad \exist i_0 i0 so that A i 0 A_{i_{0}} Ai0 is finite

    ∩ i = 1 n A i ⊂ A i 0 is finite ⇓ so that ∩ i = 1 n A i is finite \cap_{i=1}^n A_i \subset A_{i_0} \quad \text{is finite} \\ \Downarrow \\ \text{so that} \quad \cap_{i=1}^n A_i \quad \text{is finite} i=1nAiAi0is finiteso thati=1nAiis finite

    1. ∀ i = ( 1 , 2 , . . . , n ) \forall i=(1,2,...,n) i=(1,2,...,n) , A i A_i Ai is infinite

      ⇒ A i C \Rightarrow A_i^C AiC is finite

      ( ∩ i = 1 n A i ) C = ∪ i = 1 n A i C finite ⇓ s o ( ∩ i = 1 n A i ) C ∈ A \left( \cap_{i=1}^n A_i \right)^C = \cup_{i=1}^n A_i^C \quad \text{finite} \\ \Downarrow \\ so \quad \left( \cap_{i=1}^n A_i \right)^C \in \mathcal{A} (i=1nAi)C=i=1nAiCfiniteso(i=1nAi)CA

  4. Ω \Omega Ω is infinite , there exist ω ∈ Ω i = 1 , 2 , ⋯ \omega \in \Omega \quad i=1,2,\cdots ωΩi=1,2,

    A i = { ω i } i = 1 , 2 , ⋯ ⇒ A i ∈ A A_i= \left\{ \omega_i \right\} \quad i=1,2,\cdots \quad \Rightarrow \quad A_i \in \mathcal{}A Ai={ωi}i=1,2,AiA

    Consider ∪ m = 1 ∞ = { ω 2 m , ω 2 m + 2 , ⋯   } \cup_{m=1}^{ \infty}= \left\{ \omega_{2m},\omega_{2m+2},\cdots \right\} m=1={ω2m,ω2m+2,} is infinite

    Moreover , for each fixed m = 1 , 2 , ⋯ m=1,2,\cdots m=1,2, , we have ω 2 m − 1 ∈ A 2 m C \omega_{2m-1} \in A_{2m}^{C} ω2m1A2mC for every m = 1 , 2 , ⋯ m=1,2,\cdots m=1,2,

    So A 2 m − 1 ⊂ A 2 m C A_{2m-1} \subset A_{2m}^C A2m1A2mC for every m = 1 , 2 , ⋯ m=1,2,\cdots m=1,2,

    ∪ m = 1 ∞ A 2 m − 1 ⊂ A 2 m C \cup_{m=1}^{ \infty}A_{2m-1} \subset A_{2m}^C m=1A2m1A2mC

    ∴ infinite ∪ m = 1 ∞ A 2 m − 1 ⊂ ∩ m = 1 ∞ A 2 m C = ( ∪ m = 1 ∞ A 2 m C ) C \therefore \quad \text{infinite} \quad\cup_{m=1}^{ \infty}A_{2m-1} \subset \cap_{m=1}^{ \infty}A_{2m}^C= \left( \cup_{m=1}^{ \infty}A_{2m}^C \right)^C \quad infinitem=1A2m1m=1A2mC=(m=1A2mC)C is infinite

    ∴ ∪ m = 1 ∞ A 2 m \therefore \quad \cup_{m=1}^{ \infty}A_{2m} \quad m=1A2m if infinite

    ∴ ( ∪ m = 1 ∞ A 2 m ) C \therefore \quad \left(\cup_{m=1}^{ \infty}A_{2m} \right)^C\quad (m=1A2m)C is infinite

Definition 2.2

If C ⊂ 2 Ω \mathcal{C} \subset 2^{\Omega} C2Ω , The σ − a l g e b r a \sigma-algebra σalgebra generated by C \mathcal{C} C , and written as σ ( C ) \sigma(\mathcal{C}) σ(C).

  • 2 Ω 2^{\Omega} 2Ω is a σ − a l g e b r a \sigma-algebra σalgebra
  • Exercise 2.2 Let ( G α ) α ∈ A (\mathcal{G}_{\alpha})_{\alpha \in A} (Gα)αA be an arbitrary family of σ − a l g e b r a s \sigma-algebras σalgebras defined on abstract space Ω \Omega Ω. Show that H = ∩ α ∈ A G α \mathcal{H}= \cap_{\alpha \in A}\mathcal{G}_{\alpha} H=αAGα is also a σ − a l g e b r a \sigma-algebra σalgebra.

Example

  1. A = { ∅ , Ω } \mathcal{A}= \left\{ \emptyset,\Omega \right\} A={,Ω} (the trivial σ − a l g e b r a \sigma-algebra σalgebra)
  2. A A A is a subset, then σ ( A ) = { ∅ , A , A C , Ω } \sigma(A)= \left\{ \emptyset ,A ,A^C,\Omega \right\} σ(A)={,A,AC,Ω}
  3. if Ω = R \Omega = \mathbb{R} Ω=R (the real numbers) (or more generally if Ω \Omega Ω is a space with a topology, a case we treat in Chapter 8), the Borel σ − a l g e b r a \sigma-algebra σalgebra is the σ − a l g e b r a \sigma-algebra σalgebra generated by the open sets (or by the closed sets, which is equivalent)

trivial 平凡的

Borel σ − a l g e b r a \sigma -algebra σalgebra

博雷尔集—由所有开集生成的 σ \sigma σ 代数,或包含所有闭集生成的 σ \sigma σ 代数

Wolfram Mathworld: A sigma-algebra which is related to the topology of a set. The Borel sigma-algebra is defined to be the sigma-algebra generated by the open sets (or equivalently, by the closed sets).


Wikipedia:

  • The Borel algebra on X is the smallest σ-algebra containing all open sets (or, equivalently, all closed sets).

  • Borel sets are important in measure theory, since any measure defined on the open sets of a space, or on the closed sets of a space, must also be defined on all Borel sets of that space. Any measure defined on the Borel sets is called a Borel measure. Borel sets and the associated Borel hierarchy also play a fundamental role in descriptive set theory.




作业:(补补补)

Exercise 2.2 Let ( G α ) α ∈ A (\mathcal{G}_{\alpha})_{\alpha \in A} (Gα)αA be an arbitrary family of σ − a l g e b r a s \sigma-algebras σalgebras defined on abstract space Ω \Omega Ω. Show that H = ∩ α ∈ A G α \mathcal{H}= \cap_{\alpha \in A}\mathcal{G}_{\alpha} H=αAGα is also a σ − a l g e b r a \sigma-algebra σalgebra.



  • Ω \Omega Ω 是不是 H \mathcal{H} H

  • ∀ B ∈ H = ∩ α ∈ Λ G α \forall B \in \mathcal{H}= \cap_{\alpha \in \Lambda}\mathcal{G}_{\alpha} BH=αΛGα

    ∀ α ∈ A B ∈ G α is sigma algebra \forall \alpha \in A \quad B \in \mathcal{G}_{\alpha} \quad \text{is sigma algebra} αABGαis sigma algebra

    so B c ∈ G α \text{so} \quad B^c \in \mathcal{G}_{\alpha} soBcGα

    B c ∈ ∩ α ∈ Λ G α = H B^c \in \cap_{\alpha \in \Lambda} \mathcal{G}_{\alpha} = \mathcal{H} BcαΛGα=H

    • 2 Ω 2^{\Omega} 2Ω 样本空间的最大 σ \sigma σ 代数
    • C \mathcal{C} C 是集合类
    • σ ( C ) \sigma(\mathcal{C}) σ(C) 是最小的 σ \sigma σ 代数


相关概念:

  1. 内点:如果存在 P 0 P_0 P0 的某一邻域 U ( P 0 ) U(P_0) U(P0) ,使得 U ( P 0 ) ⊂ E U(P_0) \subset E U(P0)E ,则称 P 0 P_0 P0 E E E 的内点
  2. 外点:如果 P 0 P_0 P0 E c E^c Ec 的内点,则称 P 0 P_0 P0 E E E 的外点(这里的余集是针对全空间 R n R^n Rn 来作的
  3. 界点:如果 P 0 P_0 P0 既非 E E E 的内点又非 E E E 的外点,即: P 0 P_0 P0 的任一邻域内既有属于 E E E 的点,也有不属于 E E E 的点
  4. 聚点:设 E E E R n R^n Rn 中一点集, P 0 P_0 P0 R n R^n Rn 中一定点,如果 P 0 P_0 P0 的任一邻域内都含有无穷多个属于 E E E 的点,则称 P 0 P_0 P0 E E E 的一个聚点
  5. 孤立点:如果 P 0 P_0 P0 属于 E E E 但不是 E E E 的聚点,则 P 0 P_0 P0 E E E 的孤立点
  • 开核 E E E 的全体内点所组成的集合,记为 E ˚ \mathring{E} E˚

    E ˚ = { x : ∃ U ( x ) ⊂ E } \mathring{E} = \left\{ x: \exists U(x) \subset E \right\} E˚={x:U(x)E}

  • 导集 E E E 的全体聚点所组成的集合,记为 E ′ E' E

    E ′ = { x : ∀ U ( x ) , U ( x ) ∩ E \ { x } ≠ ∅ } E' = \left\{ x: \forall U(x), U(x) \cap E \backslash \{x\} \neq \emptyset \right\} E={x:U(x),U(x)E\{x}=}

  • 边界 E E E 的全体界点所组成的集合,记为 ∂ E \partial E E

    ∂ E = { x : ∀ U ( x ) , U ( x ) ∩ E ≠ ∅ , U ( x ) ∩ E c ≠ ∅ } \partial E = \left\{ x: \forall U(x),U(x) \cap E \neq \emptyset ,U(x) \cap E^c \neq \emptyset \right\} E={x:U(x),U(x)E=,U(x)Ec=}

  • 闭包 E ∪ E ′ E \cup E' EE 记为 E E E 的闭包,记为 E ‾ \overline{E} E

    E ‾ = { x : ∀ U ( x ) , U ( x ) ∩ E ≠ ∅ } = E ∪ ∂ E = E ˚ ∪ ∂ E = E ′ ∪ { E 的孤立点 } \begin{aligned} \overline{E} &= \left\{ x: \forall U(x), U(x) \cap E \neq \emptyset \right\} \\ &= E \cup \partial E \\ &= \mathring{E} \cup \partial E \\ &= E' \cup \left\{ E \text{的孤立点} \right\} \\ \end{aligned} E={x:U(x),U(x)E=}=EE=E˚E=E{E的孤立点}

  1. 开集:设 E ⊂ R n E \subset R^n ERn ,如果 E E E 的每一个点都是 E E E 的内点,则称 E E E 为开集

  2. 闭集:设 E ⊂ R n E \subset R^n ERn ,如果 E E E 的每一个聚点都属于 E E E ,则称 E E E 为闭集

    开集与闭集的对偶性:
    E 为开集,则 E c 为闭集 E \text{为开集,则} E^c \text{为闭集} E为开集,则Ec为闭集




Theorem 2.1

The Borel σ − a l g e b r a \sigma-algebra σalgebra of R \mathbb{R} R is generated by intervals of the form ( − ∞ , a ] (- \infty,a] (,a], where a ∈ Q a \in \mathbb{Q} aQ

( Q = r a t i o n a l s ) \quad (\mathbb{Q} = rationals) (Q=rationals)


Proof.

Let C \mathcal{C} C denote all open intervals. Since every open set in R \mathcal{R} R is the countable union of open intervals, we have σ ( C ) = \sigma(\mathcal{C})= σ(C)= the Borel σ − a l g e b r a \sigma-algebra σalgebra of R \mathbb{R} R

Let D \mathcal{D} D denote all intervals of the form ( − ∞ , a ] (- \infty,a] (,a], where a ∈ Q a \in \mathbb{Q} aQ.

Let ( a , b ) ∈ C (a,b) \in \mathcal{C} (a,b)C

Let ( a n ) n ≥ 1 (a_n)_{n \ge 1} (an)n1 be a sequence of rationals decreasing to a

Let ( b n ) n ≥ 1 (b_n)_{n \ge_1} (bn)n1 be a sequence of rationals increasing strictly to b.

Then

( a , b ) = ∪ n = 1 ∞ ( a n , b n ] = ∪ n = 1 ∞ ( ( − ∞ , b n ] ∩ ( − ∞ , a n ] c ) \begin{aligned} (a,b) &= \cup_{n=1}^{ \infty} (a_n, b_n] \\ &= \cup_{n=1}^{ \infty} \left( (- \infty,b_n] \cap (- \infty,a_n]^c \right) \\ \end{aligned} (a,b)=n=1(an,bn]=n=1((,bn](,an]c)

Therefore , C ⊂ σ ( D ) \mathcal{C} \subset \sigma(\mathcal{D}) Cσ(D), where σ ( C ) ⊂ σ ( D ) \sigma(\mathcal{C}) \subset \sigma(\mathcal{D}) σ(C)σ(D)

However, since each element of D \mathcal{D} D is a closed set, it is also a Borel set, and therefore D \mathcal{D} D is contained in the Borel sets B \mathcal{B} B, Thus we have
B = σ ( C ) ⊂ σ ( D ) ⊂ B \mathcal{B} = \sigma(\mathcal{C}) \subset \sigma(\mathcal{D}) \subset \mathcal{B} B=σ(C)σ(D)B

and hence σ ( D ) = B \sigma(\mathcal{D}) = \mathcal{B} σ(D)=B


这个定理给出了更容易验证 B o r e l σ − a l g e b r a Borel \sigma-algebra Borelσalgebra 的一种方法,给出了验证博雷尔集的一个充要条件




Definition 2.3

A probability measure defined on a σ − a l g e b r a A \sigma-algebra \quad \mathcal{A} σalgebraA of Ω \Omega Ω is a function P : A → [ 0 , 1 ] P: \mathcal{A} \to [0,1] P:A[0,1] that satisfies:

  • P ( Ω ) = 1 P(\Omega)=1 \quad P(Ω)=1 规范性

  • For every countable sequence ( A n ) n ≥ 1 (A_n)_{n\ge 1} (An)n1 of elements of A \mathcal{A} A, pairwise disjoint (that is, A n ∩ A m = ∅ A_n \cap A_m= \emptyset AnAm= Whenever n ≠ m n \neq m n=m), one has:

    P ( ∪ n = 1 ∞ A n ) = ∑ n = 1 ∞ P ( A n ) P \left( \cup_{n=1}^{ \infty} A_n \right) = \sum_{n=1}^{\infty} P \left( A_n \right) P(n=1An)=n=1P(An)

Axiom 2 above is called countable additivity; the number P ( A ) P(A) P(A) is called the probability of the event A A A

  • 有限可加 additivity
  • 可列可加 countable additivity

概率是 A \mathcal{A} A Ω \Omega Ω 上的一个映射,是任何一个样本空间的子集

Remark: In definition 2.3 one might imagine a more naive condition than 2, namely
A , B ∈ A , A ∩ B = ∅ ⇒ P ( A ∪ B ) = P ( A ) + P ( B ) A,B \in \mathcal{A} , A \cap B = \emptyset \quad \Rightarrow \quad P (A \cup B) = P(A) + P(B) A,BA,AB=P(AB)=P(A)+P(B)

This property is called additivity (or “finite additivity”) and, by an elementary induction, it implies that for every finite A 1 , ⋯   , A m A_1,\cdots,A_m A1,,Am of pairwise disjoint events A i ∈ A A_i \in \mathcal{A} AiA we have
P ( ∪ n = 1 m A N ) = ∑ n = 1 ∞ P ( A n ) P \left( \cup_{n=1}^{m} A_N \right) = \sum_{n=1}^{\infty} P(A_n) P(n=1mAN)=n=1P(An)




Theorem 2.2

If P P P is a probability measure on ( Ω , A ) (\Omega,\mathcal{A}) (Ω,A), then:

i. We have P ( ∅ ) = 0 P( \emptyset)=0 P()=0

ii. P P P is additive

↑ \uparrow 去年考的


Proof.

If in Axiom (2) we take A n = ∅ A_n= \emptyset An= for all n n n, we see that the number a = P ( ∅ ) a=P( \emptyset) a=P() is equal to an infinite sum of itself;

Since 0 ≤ a ≤ 1 0 \le a \le 1 0a1, this is possible only if a = 0 a=0 a=0, and we have (i).

For (ii) if suffices to apply Axiom (2) with A 1 = A A_1=A A1=A and A 2 = B A_2=B A2=B and A 3 = A 4 = ⋯ = ∅ A_3=A_4=\cdots= \emptyset A3=A4==, plus the fact that P ( ∅ ) = 0 P( \emptyset) =0 P()=0, to obtain the additivity of P P P.


Axiom (1): P ( Ω ) = 1 P(\Omega)=1 \quad P(Ω)=1 规范性

Axiom (2):

For every countable sequence ( A n ) n ≥ 1 (A_n)_{n\ge 1} (An)n1 of elements of A \mathcal{A} A, pairwise disjoint (that is, A n ∩ A m = ∅ A_n \cap A_m= \emptyset AnAm= Whenever n ≠ m n \neq m n=m), one has:

P ( ∪ n = 1 ∞ A n ) = ∑ n = 1 ∞ P ( A n ) P \left( \cup_{n=1}^{ \infty} A_n \right) = \sum_{n=1}^{\infty} P \left( A_n \right) P(n=1An)=n=1P(An)



Remark

Conversely, countable additivity is not implied by additivity.

In fact, in spite of its intuitive appeal, additivity is not enough to handle the mathematical problems of the theory, even in such a simple example as tossing a coin, as we will see later.




Theorem 2.3

Let A \mathcal{A} A be a σ − a l g e b r a \sigma-algebra σalgebra.

Suppose that P : A → [ 0 , 1 ] P: \mathcal{A} \to [0,1] P:A[0,1] satisfies (1) and is additive.

Then the following are equivalent:

i. Axiom (2) of Definition 2.3 (i.e. P P P is countable additivity)

ii. If A n ∈ A A_n \in \mathcal{A} AnA and A n ↓ ∅ A_n \downarrow \emptyset An, then P ( A n ) ↓ 0 P(A_n) \downarrow 0 P(An)0

iii. If A n ∈ A A_n \in \mathcal{A} AnA and A n ↓ A A_n \downarrow A AnA, then P ( A n ) ↓ P ( A ) P(A_n) \downarrow P(A) P(An)P(A)

iv. If A n ∈ A A_n \in \mathcal{A} AnA and A n ↑ Ω A_n \uparrow \Omega AnΩ, then P ( A n ) ↑ 1 P(A_n) \uparrow 1 P(An)1

v. If A n ∈ A A_n \in \mathcal{A} AnA and A n ↑ A A_n \uparrow A AnA, then P ( A n ) ↑ P ( A ) P(A_n) \uparrow P(A) P(An)P(A)


Proof.

The notation A n ↓ A A_n \downarrow A AnA means that A n + 1 ⊂ A n A_{n+1} \subset A_n An+1An, each n n n, and ∩ n = 1 ∞ A n = A \cap_{n=1}^{ \infty} A_n =A n=1An=A.

The notation A n ↑ A A_n \uparrow A AnA means that A n ⊂ A n + 1 A_n \subset A_{n+1} AnAn+1, each n n n, and ∪ n = 1 ∞ A n = A \cup_{n=1}^{ \infty}A_n=A n=1An=A

Note that is A n ↓ A A_n \downarrow A AnA, then A n c ↑ A c A_n^c \uparrow A^c AncAc, and by the finite additivity axiom P ( A n c ) = 1 − P ( A n ) P(A_n^c)=1-P(A_n) P(Anc)=1P(An).

Therefore (ii) is equivalent to (iv) and similarly (iii) is equivalent to (v).

Moreover by choosing A A A to be Ω \Omega Ω we have that (v) implies (iv)

只要证明了 (ii) ,就可以推出 (iv);只要证明了 (iii),就可以推出 (v);在 (v) 里面,取 A → Ω A\to \Omega AΩ,则能证明 (iv)。

Suppose now that we have (iv).

Let A n ∈ A A_n \in \mathcal{A} AnA with A n ↑ A A_n \uparrow A AnA.

Set B n = A n ∪ A c B_n = A_n \cup A^c Bn=AnAc.

Then B n B_n Bn increase to Ω \Omega Ω, hence P ( B n ) P(B_n) P(Bn) increase to 1 1 1

Since A n ⊂ A A_n \subset A AnA we have A n ∩ A c = ∅ A_n \cap A^c= \emptyset AnAc=. Thus

1 = lim ⁡ n → ∞ P ( B n ) = lim ⁡ n → ∞ { P ( A n ) + P ( A c ) } 1 = \lim_{n \to \infty} P(B_n) = \lim_{n \to \infty} \left\{ P(A_n) + P(A^c) \right\} 1=nlimP(Bn)=nlim{P(An)+P(Ac)}

hence lim ⁡ n → ∞ P ( A n ) = 1 − P ( A c ) = P ( A ) \lim_{n \to \infty} P(A_n) = 1-P(A^c) = P(A) limnP(An)=1P(Ac)=P(A), and we have (v) (It means (iv) → \to (v))

It remains to show that (i) ⇔ \Leftrightarrow (v)

Suppose we have (v).

Let A n ∈ A A_n \in \mathcal{A} AnA be pairwise disjoint:

\qquad that is, if n ≠ m n \neq m n=m, then A n ∩ A m = ∅ A_n \cap A_m = \emptyset AnAm=

Define B n = ∪ 1 ≤ k ≤ n A k B_n = \cup_{1 \le k \le n}A_k Bn=1knAk and B = ∪ k = 1 n P ( A k ) B = \cup_{k=1}^{n}P(A_k) B=k=1nP(Ak)

Then by the definition of a Probability Measure we have P ( B n ) = ∑ k = 1 n P ( A k ) P(B_n)= \sum_{k=1}^{n} P(A_k) P(Bn)=k=1nP(Ak) which increase with n n n to ∑ k = 1 n P ( A n ) \sum_{k=1}^{n} P(A_n) k=1nP(An), and also P ( B n ) P(B_n) P(Bn) increases to P ( B ) P(B) P(B) by (v)

We deduce lim ⁡ n → ∞ P ( B n ) = P ( B ) \lim_{n \to \infty} P(B_n) = P(B) limnP(Bn)=P(B) and we have

P ( B ) = P ( ∪ n = 1 ∞ A n ) = ∑ n = 1 ∞ P ( A n ) P(B) = P( \cup_{n=1}^{ \infty} A_n) = \sum_{n=1}^{\infty} P(A_n) P(B)=P(n=1An)=n=1P(An)

and thus we have (i)

Finally assume we have (i), and we wish to establish (v)

Let A n ∈ A A_n \in \mathcal{A} AnA, with A n A_n An increasing to A A A.

We construct a new sequence as follows:

B 1 = A 1 B 2 = A 2 − A 1 = A 2 ∩ A 1 c ⋮ B n = A n − A n − 1 \begin{aligned} B_1 &= A_1 \\ B_2 &= A_2 - A_1 = A_2 \cap A_1^c \\ \vdots & \\ B_n &= A_n - A_{n-1} \\ \end{aligned} B1B2Bn=A1=A2A1=A2A1c=AnAn1

Then ∪ n = 1 ∞ B n = A \cup_{n=1}^{ \infty}B_n = A n=1Bn=A and the events ( B n ) n ≥ 1 (B_n)_{n\ge 1} (Bn)n1 are pairwise disjoint.

Therefore by (i) we have

P ( A ) = lim ⁡ n → ∞ ∑ k = 1 n P ( B k ) P(A) = \lim_{n \to \infty} \sum_{k=1}^{n} P(B_k) P(A)=nlimk=1nP(Bk)

But also ∑ k = 1 n P ( B k ) = P ( A n ) \sum_{k=1}^{n} P(B_k)=P(A_n) k=1nP(Bk)=P(An), hence we deduce lim ⁡ n → ∞ P ( A n ) = P ( A ) \lim_{n \to \infty} P(A_n) = P(A) limnP(An)=P(A) and we have (v)




Remark :示性函数

If A ∈ 2 Ω A \in 2^{\Omega} A2Ω, we define the indicator function by

1 A ( ω ) = { 1 i f   ω ∈ A 0 i f   ω ∉ A 1_{A}(\omega) = \left\{ \begin{array}{lll} 1 & if \ \omega \in A \\ 0 & if \ \omega \not\in A \end{array} \right. 1A(ω)={10if ωAif ωA

We often do not explicitly write the ω \omega ω, and just write 1 A 1_{A} 1A

We can say that A n ∈ A A_{n} \in \mathcal{A} AnA converges to A A A (we write A n → A A_n \to A AnA) if lim ⁡ n → ∞ 1 A n ( ω ) = 1 A ( ω ) \lim_{n \to \infty} 1_{A_n}(\omega)=1_{A}(\omega) limn1An(ω)=1A(ω) for all ω ∈ Ω \omega \in \Omega ωΩ

Note it also tends to A A A in the above sense.







补几个概念:

数列极限:数列 { a n } \{a_n\} {an} 收敛于 a a a 的定义:

对于每一个给定的 ε > 0 \varepsilon>0 ε>0 ,存在 N N N ,使得对满足条件 n > N n>N n>N 的每个自然数 n n n ,成立不等式 ∣ a n − a ∣ < ε \mid a_n - a \mid < \varepsilon ana<ε

∀ ε > 0 , ∃ N , ∀ n > N ⇒ ∣ a n − a ∣ < ε \forall \varepsilon > 0, \exists N, \forall n>N\quad \Rightarrow \quad \mid a_n-a \mid < \varepsilon ε>0,N,n>Nana<ε



函数收敛:函数 F ( x ) F(x) F(x) x x x 趋于 a a a 时以 A A A 为极限:

a , A ∈ R a,A \in \mathbb{R} a,AR ,函数 f f f 在点 a a a 的一个邻域中有定义,若对每一个给定的 ε > 0 \varepsilon>0 ε>0 ,存在 δ > 0 \delta>0 δ>0 ,使得当 x ∈ O δ ( a ) − { a } x \in O_{\delta}(a)-\{a\} xOδ(a){a} (即 0 < ∣ x − a ∣ < δ 0< \mid x-a \mid <\delta 0<xa<δ) 时,成立 ∣ f ( x ) − A ∣ < ε \mid f(x)-A \mid <\varepsilon f(x)A<ε

∀ ε > 0 , ∃ δ > 0 , ∀ x ∈ O δ ( a ) − { a } ⇒ ∣ f ( x ) − A ∣ < ε \forall \varepsilon > 0 , \exists \delta>0, \forall x \in O_{\delta}(a) - \{a\} \quad \Rightarrow \quad \mid f(x) - A \mid < \varepsilon ε>0,δ>0,xOδ(a){a}f(x)A<ε



函数的一致连续性:函数 f f f 在区间 I I I 上为一致连续:

如果对每一个 ε > 0 \varepsilon>0 ε>0 ,存在 δ > 0 \delta>0 δ>0 ,使得当 x ′ , x ′ ′ ∈ I x',x'' \in I x,xI ∣ x ′ − x ′ ′ ∣ < δ \mid x'-x'' \mid <\delta xx<δ 时,成立 ∣ f ( x ′ ) − f ( x ′ ′ ) ∣ < δ \mid f(x')-f(x'') \mid < \delta f(x)f(x)<δ



函数列的一致收敛:设一个函数列 { f n } \{f_n\} {fn} 在数集 E E E 上收敛于其极限函数 f ( x ) f(x) f(x). 称 { f n } \{f_n\} {fn} E E E 上一致收敛:

如果对于每个正数 ε > 0 \varepsilon >0 ε>0,存在 N N N, 使得对每个正整数 n > N n>N n>N ,和每个 x ∈ E x \in E xE,均成立 ∣ f n ( x ) − f ( x ) ∣ < ε \mid f_n(x) - f(x) \mid < \varepsilon fn(x)f(x)<ε

  f o r   a n y   f i x   x ∈ E ∀ ε > 0 , ∃ N , ∀ n > N ⇓ ∣ f n ( x ) − f ( x ) ∣ < ε \begin{aligned} & \ for \ any \ fix \ x \in E \\ & \forall \varepsilon>0 , \exists N , \forall n> N \\ & \Downarrow \\ & \mid f_n(x) - f(x) \mid < \varepsilon \end{aligned}  for any fix xEε>0,N,n>Nfn(x)f(x)<ε

Theorem 2.4

Let P be a probability measure

Let A n A_n An be a sequence of events in A \mathcal{A} A which converges to A A A

Then.

A ∈ A a n d lim ⁡ n → ∞ P ( A n ) = P ( A ) A \in \mathcal{A} \quad and \quad \lim_{n \to \infty} P(A_n) = P(A) AAandnlimP(An)=P(A)


Proof.

Let us define

lim sup ⁡ n → ∞ A n = ∩ n = 1 ∞ ∪ m ≥ n A m \limsup_{n \to \infty} A_n = \cap_{n=1}^{ \infty} \cup_{m \ge n} A_m nlimsupAn=n=1mnAm

lim inf ⁡ n → ∞ A n = ∪ n = 1 ∞ ∩ M ≥ n A m \liminf_{n \to \infty} A_n = \cup_{n=1}^{ \infty} \cap_{M \ge n} A_m nliminfAn=n=1MnAm

B n = ∪ m ≥ n A m C n = ∩ m ≥ n A m B_n = \cup_{m\ge n} A_m \quad C_n = \cap_{m\ge n}A_m Bn=mnAmCn=mnAm

∃ ω ∈ ∪ n = 1 ∞ ∩ m ≥ n A m = ∪ n = 1 ∞ C n \exist \omega \in \cup_{n=1}^{ \infty} \cap_{m\ge n}A_m = \cup_{n=1}^{ \infty}C_n ωn=1mnAm=n=1Cn

一定存在一个 n 0 n_0 n0 ,使得 ω ∈ C n 0 = ∩ m ≥ n 0 A m \omega \in C_{n_0}= \cap_{m\ge n_0}A_m ωCn0=mn0Am

则对每个 m ≥ n 0 m\ge n_0 mn0 ,有 ω ∈ A m \omega \in A_m ωAm

ω ∈ ∪ m ≥ 1 A m = B 1 ω ∈ ∪ m ≥ 2 A m = B 2 ⋮ ω ∈ ∪ m ≥ n A m = B n \begin{array}{lll} \omega \in \cup_{m\ge 1}A_m = B_1 \\ \omega \in \cup_{m\ge 2}A_m = B_2 \\ \vdots \\ \omega \in \cup_{m\ge n}A_m = B_n \\ \end{array} ωm1Am=B1ωm2Am=B2ωmnAm=Bn

ω ∈ ∩ n = 1 ∞ B n = ∩ n = 1 ∞ ∪ m ≥ n A m \omega \in \cap_{n=1}^{ \infty}B_n = \cap_{n=1}^{ \infty} \cup_{m\ge n}A_m ωn=1Bn=n=1mnAm

说明

lim inf ⁡ n → ∞ A n = ∪ n = 1 ∞ ∩ M ≥ n A m ⊂ lim sup ⁡ n → ∞ A m = ∩ n = 1 ∞ ∪ m ≥ n A m \liminf_{n \to \infty} A_n = \cup_{n=1}^{ \infty} \cap_{M \ge n} A_m \qquad \subset \qquad \limsup_{n \to \infty} A_m = \cap_{n=1}^{ \infty} \cup_{m \ge n} A_m nliminfAn=n=1MnAmnlimsupAm=n=1mnAm

Since A \mathcal{A} A is a σ \sigma σ-algebra, we have

lim sup ⁡ n → ∞ A n ∈ A lim inf ⁡ n → ∞ A n ∈ A \limsup_{n \to \infty} A_n \in \mathcal{A} \qquad \liminf_{n \to \infty} A_n \in \mathcal{A} nlimsupAnAnliminfAnA

这一步是由于上面上极限和下极限的定义,可以看出 A m A_m Am σ \sigma σ-代数,则其集合的运算也是 σ \sigma σ-代数

By hypothesis A n A_n An converges to A A A, which means lim ⁡ n → ∞ 1 A n = 1 A \lim_{n \to \infty} 1_{A_n}=1_{A} limn1An=1A for all ω \omega ω.

A n ∈ A A_n \in \mathcal{A} AnA converges to A A A if lim ⁡ n → ∞ 1 A n ( ω ) = 1 A ( ω ) \lim_{n \to \infty} 1_{A_n}(\omega)=1_{A}(\omega) limn1An(ω)=1A(ω) for all ω ∈ Ω \omega \in \Omega ωΩ

This is equivalent to saying that

A = lim sup ⁡ n → ∞ A n = lim inf ⁡ n → ∞ A n A = \limsup_{n \to \infty} A_n = \liminf_{n \to \infty} A_n A=nlimsupAn=nliminfAn

用极限逼近的思想去证明

∀ ω ∈ A 1 A ( ω ) = 1 \forall \omega \in A \qquad 1_{A}(\omega)=1 ωA1A(ω)=1

lim ⁡ n → ∞ 1 A n ( ω ) = 1 A ( ω ) = 1 \lim_{n \to \infty} 1_{A_n}(\omega)= 1_{A}(\omega)=1 nlim1An(ω)=1A(ω)=1

∃ n 0 s . t . n ≥ n 0 1 A n ( ω ) = 1 s o . ω ∈ A n , n ≥ n 0 ω ∈ ∩ n ≥ n 0 A n ⊂ ∪ n 0 ≥ 1 ∩ n ≥ n 0 A n = lim inf ⁡ n → ∞ A n ⇒ A ⊂ lim inf ⁡ n → ∞ A n \begin{array}{llll} \exists n_0 \quad s.t. \quad n \ge n_0 \quad 1_{A_n}(\omega) =1 \\ so. \quad \omega \in A_n, n\ge n_0 \\ \omega \in \cap_{n\ge n_0} A_n \subset \cup_{n_0 \ge 1} \cap_{n\ge n_0} A_n = \liminf_{n \to \infty} A_n \\ \\ \Rightarrow A \subset \liminf_{n \to \infty} A_n \end{array} n0s.t.nn01An(ω)=1so.ωAn,nn0ωnn0Ann01nn0An=nliminfAnAnliminfAn

∀ ω ∈ A c 1 A n ( ω ) = 0 \forall \omega \in A^{c} \qquad 1_{A_n}(\omega)=0 ωAc1An(ω)=0

lim ⁡ n → ∞ 1 A n ( ω ) = 1 A ( ω ) = 0 \lim_{n \to \infty}1_{A_n}(\omega)=1_{A}(\omega)=0 nlim1An(ω)=1A(ω)=0

∃ n 1 s . t . n ≥ n 1 1 A n ( ω ) = 0 s o . ω ∈ A n c , n ≥ n 1 ω ∈ ∩ n ≥ n 0 A n c ⊂ ∪ n 0 ≥ 1 ∩ n ≥ n 0 A n c = ( ∩ n 1 ≥ 1 ∪ n ≥ n 1 A n ) c = ( lim sup ⁡ n → ∞ A n ) c s o . A c ⊂ ( lim sup ⁡ n → ∞ A n ) c ⇒ lim inf ⁡ n → ∞ A n ⊂ A \begin{array}{llll} \exists n_1 \quad s.t. \quad n \ge n_1 \quad 1_{A_n}(\omega) =0 \\ so. \quad \omega \in A_n^c, n\ge n_1 \\ \omega \in \cap_{n\ge n_0} A_n^c \subset \cup_{n_0 \ge 1} \cap_{n\ge n_0} A_n^c = \left( \cap_{n_1 \ge 1} \cup_{n\ge n_1}A_n \right)^c \\ \qquad \qquad \qquad \qquad \qquad \qquad \qquad = \left(\limsup_{n \to \infty} A_n \right)^c\\ \\ so.\quad A^c \subset \left(\limsup_{n \to \infty} A_n \right)^c \\ \\ \Rightarrow \liminf_{n \to \infty} A_n \subset A \end{array} n1s.t.nn11An(ω)=0so.ωAnc,nn1ωnn0Ancn01nn0Anc=(n11nn1An)c=(nlimsupAn)cso.Ac(nlimsupAn)cnliminfAnA

lim sup ⁡ A n ⊂ A ⊂ lim inf ⁡ A n \limsup A_n \subset A \subset \liminf A_n limsupAnAliminfAn

so

A = lim sup ⁡ n → ∞ A n = lim inf ⁡ n → ∞ A n A = \limsup_{n \to \infty} A_n = \liminf_{n \to \infty} A_n A=nlimsupAn=nliminfAn

Therefore A ∈ A A \in \mathcal{A} AA

Now, let B n = ∪ m ≥ n A m C n = ∩ m ≥ n A m B_n = \cup_{m\ge n} A_m \quad C_n = \cap_{m\ge n}A_m Bn=mnAmCn=mnAm

Then

B n B_n Bn decreases to A A A : B n B_n Bn 是并集,随着 n n n 的增大,并集的个数减小,所以 B n B_n Bn 会减小到 A A A

C n C_n Cn increases to A A A : C n C_n Cn 是交集,随着 n n n 的增大,交集的个数减小,所以 C n C_n Cn 会增大到 A A A

注意这里我的写法和书上不一致,主要是为了和前面的保持一致

Thus (by theorem 2.3)

lim ⁡ n → ∞ P ( B n ) = lim ⁡ n → ∞ P ( C n ) = P ( A ) \lim_{n \to \infty}P(B_n)=\lim_{n \to \infty} P(C_n)=P(A) nlimP(Bn)=nlimP(Cn)=P(A)

However C n ⊂ A n ⊂ B n C_n \subset A_n \subset B_n CnAnBn , therefore

P ( C n ) ≤ P ( A n ) ≤ P ( B n ) P(C_n) \le P(A_n) \le P(B_n) P(Cn)P(An)P(Bn)

So.

lim ⁡ n → ∞ P ( A n ) = P ( A ) \lim_{n \to \infty} P(A_n) = P(A) nlimP(An)=P(A)




Exercise 2.6

Let A \mathcal{A} A be a σ \sigma σ-algebra of subsets of Ω \Omega Ω

Let B ∈ A B \in \mathcal{A} BA

  1. Show that F = { A ∩ B : A ∈ A } \mathcal{F}= \left\{ A \cap B : A \in \mathcal{A} \right\} F={AB:AA} is a σ \sigma σ-algebra of subsets of B B B.
  2. Is it still true when B B B is a subset of Ω \Omega Ω that does not belong to A \mathcal{A} A

Proof.

  1. 证明空集和全集(此时全集为 B B B )在 F \mathcal{F} F

∅ = ∅ ∩ B ∅ ∈ A ⇒ ∅ ∈ F B = B ∩ B B ∈ A ⇒ B ∈ F \begin{array}{rlll} \emptyset= \emptyset \cap B & \emptyset \in \mathcal{A} & \Rightarrow \emptyset \in \mathcal{F} \\ B = B \cap B & B \in \mathcal{A} & \Rightarrow B \in \mathcal{F} \end{array} =BB=BBABAFBF

  1. 证明对于任意的集合 C C C F \mathcal{F} F 里面,它的补集也在 F \mathcal{F} F 里面

$$
\begin{array}{lll}
\forall C \in \mathcal{F} & \exists A \in \mathcal{A} \quad s.t. C = AB \
&
\begin{aligned}
B-C = B \cap C^c &= B \cap \left( A \cap B \right)^c \
&= B \cap \left( A^c + B^c \right) \
&= BA^c + BB^c \
&= BA^c \
\end{aligned}
\

& \because A \in \mathcal{A} \qquad \therefore A^c \in \mathcal{A} \\
& \therefore C^c=B-C \in \mathcal{F}

\end{array}
$$

  1. 证明对于可数并和可数交,其仍在 F \mathcal{F} F 里面

i f   C n ∈ F ∃ A n ∈ A s . t . C n = A n B ∪ n = 1 ∞ C n = ∪ n = 1 ∞ ( A n B ) = ( ∪ n = 1 ∞ A n ) B ∴ ∪ n = 1 ∞ A n ∈ A ∴ ∪ n = 1 ∞ C n ∈ F \begin{array}{lll} if \ C_n \in \mathcal{F} & \exists A_n \in \mathcal{A} \quad s.t. C_n = A_n B \\ & \cup_{n=1}^{ \infty} C_n = \cup_{n=1}^{ \infty} (A_n B) = \left( \cup_{n=1}^{ \infty} A_n \right)B \\ \\ & \therefore \cup_{n=1}^{ \infty} A_n \in \mathcal{A} \\ & \therefore \cup_{n=1}^{ \infty} C_n \in \mathcal{F} \end{array} if CnFAnAs.t.Cn=AnBn=1Cn=n=1(AnB)=(n=1An)Bn=1AnAn=1CnF




Exercise 2.7

Exercise 以前讲过

Chapter 3 以后补。。。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
《哈佛概率论课本:introduction to probability》是一本涵盖基础概率论知识的教材。该书针对计算机科学、统计学和应用数学等领域的学生和专业人士,旨在帮助读者深入理解概率论的基本概念和应用。 首先,该书包含了对概率的基本定义和相关概念的介绍。读者将学习到概率空间、样本空间、随机变量等与概率相关的核心概念,这为后续的理论应用打下了基础。 其次,该书详细介绍了概率计算的方法和技巧。读者将掌握如何计算并理解事件的概率,特别是涉及到独立事件、条件概率、贝叶斯定理等重要概念。此外,该书还介绍了概率分布函数、联合概率分布和随机变量的期望等内容,使读者能够更好地理解随机现象和变量的特征。 更进一步,该书介绍了概率的应用领域,包括统计推断和假设检验等。读者将了解到如何利用概率论的工具来进行数据分析和科学推断,这对于从事研究和实践领域的专业人士具有重要意义。 最后,该书提供了丰富的实例和习题,以帮助读者巩固理论知识并提高解题能力。通过解析和实际案例,读者将能够将概率论知识应用到实际问题中,并培养分析和推理能力。 总之,哈佛概率论课本《introduction to probability》是一本系统、全面且深入浅出的教材。它不仅适用于概率论和数学领域的学生,也对计算机科学、统计学和应用数学等相关专业的学者和研究人员具有重要参考价值。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值