正常卷积与空洞卷积输出特征图与感受野大小的计算

本文详细介绍了空洞卷积的概念,通过实例展示了空洞卷积核大小的计算,并探讨了其对特征图大小的影响。同时,讨论了卷积神经网络中感受野的计算方法,特别在空洞卷积情况下如何计算感受野的理论值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

空洞卷积的计算过程
空洞卷积(Dilated convolutions)在卷积的时候,会在卷积核元素之间塞入空格,如下图所示:
在这里插入图片描述
空洞卷积过程,蓝色表示输入,绿色表示输出
这里引入了一个新的超参数 d,(d - 1) 的值则为塞入的空格数,假定原来的卷积核大小为 k,那么塞入了 (d - 1) 个空格后的卷积核大小 n 为:
在这里插入图片描述

进而,假定输入空洞卷积的大小为 i,步长 为 s ,空洞卷积后特征图大小 o 的计算公式为:

在这里插入图片描述

卷积感受野计算
感受野(receptive field)
CNN中,某一层输出结果中一个元素所对应的输入层的区域大小.

感受野计算
从后往前
output field size = ( input field size - kernel size + 2 × padding ) / stride + 1,变形之后得到input field size = (output field size - 1)× stride - 2 × padding + kern

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值