Batch Normolization(批归一化)

批归一化(Batch Normalization)用于解决内部协变量偏移问题,通过计算迷你批次的均值和方差对网络层输入进行归一化,加速模型训练的收敛速度,并具有一定的正则化效果。它在神经网络中调整输入分布,使模型参数学习更加稳定高效。
摘要由CSDN通过智能技术生成

Why:

Internal  Covariate Shift:网络中间层在训练过程中,输入数据分布的改变。训练过程中参数会不断的更新,前面层训练参数的更新将导致后面层输入数据分布的变化。

因此,模型参数要不断去适应这种随迭代变化的输入分布,这回导致模型参数学习很慢。如果能使每层的输入分布固定(如均值为0,方差为1的高斯分布),那么模型参数的学习将会更加容易。

What:

 

将每层输入的分布做归一化的操作,叫做Batch Normolization(批归一化)。

输入——>计算mini-batch的均值和方差——>归一化——>线性变换——>输出

Results:

  1. 输入数据样本空间中的分布将更加均匀和固定,模型参数的学习也会变得更加容易,显著加速模型训练的收敛速度
  2.  限制了在前层的参数的更新,减少了输入值改变的问题,使输出值更加稳定,因此有轻微的正则化的效果。
  3. 给隐藏层增加了噪音,有一定的正则化效果。

How:

卷积神经网络经过卷积后得到的是一系列的特征图,如果min-batch sizes为m,那么网络某一层输入数据可以表示为四维矩阵(m,f,p,q),m为min-batch sizes,f为特征图个数&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值